Synlett 2012; 23(14): 2106-2110
DOI: 10.1055/s-0032-1316682
letter
© Georg Thieme Verlag Stuttgart · New York

Manganese-Mediated N-Heteroarylation of Indoles and Indazoles in Water

Fui-Fong Yong
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore, Email: yongchua.teo@nie.edu.sg
,
Yong-Chua Teo*
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore, Email: yongchua.teo@nie.edu.sg
› Author Affiliations
Further Information

Publication History

Received: 30 April 2012

Accepted after revision: 08 June 2012

Publication Date:
03 August 2012 (online)


Abstract

A convenient strategy for the N-heteroarylation of indoles and indazoles using MnF2/trans-1,2-diaminocyclohexane as catalyst and cesium carbonate as the base in water has been developed. The protocol afforded the corresponding N-heteroarylated products in moderate to good yields (up to 90%).

Supporting Information

 
  • References and Notes

    • 1a Comprehensive Heterocyclic Chemistry . Katritzky AR, Rees CW. Elsevier; Oxford: 1996
    • 1b Fairlamb IJ. S. Chem. Soc. Rev. 2007; 36: 1036
    • 1c Schlosser M, Mongin F. Chem. Soc. Rev. 2007; 36: 1161
    • 1d Salama I, Hocke C, Utz W, Prante O, Boeckler F, Hübner H, Kuwert T, Gmeiner P. J. Med. Chem. 2007; 50: 489
    • 1e Meyers KM, Kim N, Méndez-Andino JL, Hu XE, Mumin RN, Klopfenstein SR, Wos JA, Mitchell MC, Paris JL, Ackley DC, Holbert JK, Mittelstadt SW. Reizes O. Bioorg. Med. Chem. Lett. 2007; 17: 814
    • 2a Lechat P, Tesleff S, Bownan WC. Aminopyridines and Similarly Acting Drugs . Pergamon Press; Oxford: 1982
    • 2b Fioravanti R, Biaval M, Porrettal GC, Landolfil C, Simonetti N, Villa A, Conte E, Porta-Puglia A. Eur. J. Med. Chem. 1995; 123
    • 2c Ikeda M, Maruyama K, Nobuhara Y, Yamada T, Ukabe S. Chem. Pharm. Bull. 1996; 44: 1700
    • 2d Richardson CM, Gillespie RJ, Williamson DM, Jordan AM, Fink A, Knight AR, Sellwood DM, Misra A. Bioorg. Med. Chem. Lett. 2006; 16: 5993
    • 2e Gondi SR, Son DY. Synth. Commun. 2008; 38: 401
    • 3a Arndt KE, Kleschick WA, Reifschneider W, Swisher BA, Ehr RJ, Jachetta JJ, Van Heertum JC. WO 9601828, 1996
    • 3b Maurer F, Erdelen C, Kuck K.-H, Mauler-Machnik A, Wachendorff-Neumann U, Turberg A. WO 03059903, 2003
    • 4a Araki K, Mutai T, Shigemitsu Y, Yamada M, Nakajima T, Kuroda S, Shimao I. J. Chem. Soc., Perkin Trans. 2 1996; 613
    • 4b Yoshida M, Koumura N, Misawa Y, Tamaoki N, Matsumoto H, Kawanami H, Kazaoui S, Minami N. J. Am. Chem. Soc. 2007; 129: 11039
    • 4c Lah N, Clérac R. Polyhedron 2009; 28: 2466
    • 5a Pedersen EB, Carlsen D. Synthesis 1978; 844
    • 5b Gupton JT, Idoux JP, Baker G, Colon C, Crews AD, Jurss CD, Rampi RC. J. Org. Chem. 1983; 48: 2933
    • 5c Bambal R, Haznlik RP. J. Org. Chem. 1994; 59: 729
    • 5d Kotsuki H, Sakai H, Shinohara T. Synlett 2000; 116
    • 5e Narayan S, Seelhammer T, Gawley RE. Tetrahedron Lett. 2004; 45: 757
    • 5f Bolliger JL, Frech CM. Tetrahedron 2009; 65: 1180

      For palladium-catalyzed N-heteroarylations of nitrogen nucleophiles with heteroaryl halides, see:
    • 6a Madar DJ, Kopecka H, Pireh D, Pease J, Pliushchev M, Sciotti RJ, Wiedeman PE, Djuric SW. Tetrahedron Lett. 2001; 42: 3681
    • 6b Ji J, Li T, Bunnelle WH. Org. Lett. 2003; 5: 4611
    • 6c Hopper MW, Utsunomiya M, Hartwig JF. J. Org. Chem. 2003; 68: 2861
    • 6d Charles MD, Schultz P, Buchwald SL. Org. Lett. 2005; 7: 3965
    • 6e Stauffer SR, Steinbeiser MA. Tetrahedron Lett. 2005; 46: 2571
    • 6f Shen Q, Shekhar S, Stambuli JP, Hartwig JF. Angew. Chem. Int. Ed. 2005; 44: 1371
    • 6g Anderson KW, Tundel RE, Ikawa T, Altman RA, Buchwald SL. Angew. Chem. Int. Ed. 2006; 45: 6523
    • 6h Marion N, Ecarnot EC, Navarro O, Amoroso D, Bell A, Nolan SP. J. Org. Chem. 2006; 71: 3816
    • 6i Ikawa T, Barder TE, Biscoe MR, Buchwald SL. J. Am. Chem. Soc. 2007; 129: 13001
    • 6j Shen Q, Ogata R, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 6586
    • 6k Organ MG, Abdel-Hadi M, Avola CJ, Dubovyk I, Hadel N, Kantchev EA. B, O’Brien CJ, Sayah M, Valente C. Chem. Eur. J. 2008; 14: 2443
    • 6l Withbroe GJ, Singer RA, Sieser JE. Org. Process Res. Dev. 2008; 12: 480
    • 6m Fors BP, Dooleweerdt K, Zeng Q, Buchwald SL. Tetrahedron 2009; 65: 6576

      For copper-catalyzed N-heteroarylations of nitrogen nucleophiles with heteroaryl halides, see:
    • 7a Klapars A, Antilla JC, Huang X, Buchwald SL. J. Am. Chem. Soc. 2001; 123: 7727
    • 7b Klapars A, Huang X, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 7421
    • 7c Cristau H.-J, Cellier Pascal P, Spindler J.-F, Taillefer M. Eur. J. Org. Chem. 2004; 695
    • 7d Enguehard-Gueiffier C, Thery I, Gueiffier A, Buchwald SL. Tetrahedron 2006; 62: 6042
    • 7e Zhu L, Guo P, Li G, Lan J, Xie R, You J. J. Org. Chem. 2007; 72: 8535
    • 7f Huang Y.-Z, Miao H, Zhang Q.-H, Chen C, Xu J. Catal. Lett. 2008; 122: 344
    • 7g Verma AK, Singh J, Larock RC. Tetrahedron 2009; 65: 8434
    • 7h Chen H, Wang D, Wang X, Huang W, Cai Q, Ding K. Synthesis 2010; 1505
    • 7i Xu H.-J, Zheng F.-Y, Liang Y.-F, Cai Z.-Y, Feng Y.-S, Che D.-Q. Tetrahedron Lett. 2010; 51: 669
    • 7j Wu X, Hu W. Chin. J. Chem. 2011; 29: 2124
  • 8 Baffoe J, Hoe MY, Touré BB. Org. Lett. 2010; 12: 1532
  • 9 Zhu L, Cheng L, Zhang Y, Xie R, You J. J. Org. Chem. 2007; 72: 2737
  • 10 Tang B.-X, Guo S.-M, Zhang M.-B, Li J.-H. Synthesis 2008; 1707
  • 11 Liu Z.-J, Vors J.-P, Gesing ER. F, Bolm C. Adv. Synth. Catal. 2010; 352: 3158
  • 12 Liu Z.-J, Vors J.-P, Gesing ER. F, Bolm C. Green Chem. 2011; 13: 42
  • 13 Teo Y.-C, Yong F.-F, Poh C.-Y, Yan Y.-K, Chua G.-L. Chem. Commun. 2009; 6258
  • 14 Representative Characterization Data
    5-Bromo-1-(pyridin-3-yl)-1H-pyrrolo[2,3-b]pyridine (4a)
    1H NMR (400 MHz, CDCl3): δ = 8.98 (d, J = 2.2 Hz, 1 H), 8.61 (d, J = 3.9 Hz, 1 H), 8.39 (d, J = 2.1 Hz, 1 H), 8.22–8.25 (m, 1 H), 8.12 (d, J = 2.3 Hz, 1 H), 7.56 (d, J = 3.7 Hz, 1 H), 7.47–7.50 (m, 1 H), 6.65 (d, J = 3.8 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 149.9, 147.6, 144.6, 144.4, 134.8, 131.4, 131.0, 128.3, 123.9, 123.3, 110.8, 102.3. Anal. Calcd for C12H8BrN3: C, 52.58; H, 2.94; N, 15.33. Found: C, 52.66; H, 3.25; N, 15.41. 5-Bromo-1-(pyridin-2-yl)-1H-pyrrolo[2,3-b]pyridine (4b) 1H NMR (400 MHz, CDCl3): δ = 8.80 (d, J = 8.8 Hz, 1 H), 8.48 (d, J = 6.3 Hz, 1 H), 8.38–8.41 (m, 2 H), 8.06 (d, J = 2.3 Hz, 1 H), 7.86 (t, J = 8.8 Hz, 1 H), 7.18 (t, J = 6.1 Hz, 1 H), 6.59 (d, J = 11.1 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 150.4, 148.3, 145.8, 143.6, 138.4, 131.1, 128.0, 124.9, 120.7, 115.6, 113.1, 102.0. Anal. Calcd for C12H8BrN3: C, 52.58; H, 2.94; N, 15.33. Found: C, 52.58; H, 3.14; N, 15.42. 5-Bromo-1-(pyridin-2-yl)-1H-indazole (7a) 1H NMR (400 MHz, CDCl3): δ = 8.76 (d, J = 9.0 Hz, 1 H), 8.52 (d, J = 5.2 Hz, 1 H), 8.13 (s, 1 H), 8.04 (d, J = 8.7 Hz, 1 H), 7.91 (s, 1 H), 7.84 (t, J = 8.7 Hz, 1 H), 7.59 (d, J = 10.5 Hz, 1 H), 7.16–7.19 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 154.0, 147.7, 138.4, 137.6, 135.7, 130.9, 127.5, 123.1, 120.8, 116.9, 115.6, 113.4. Anal. Calcd for C12H8BrN3: C, 52.58; H, 2.94; N, 15.33. Found: C, 52.58; H, 3.13; N, 15.41. 6-Bromo-1-(pyridin-2-yl)-1H-indazole (8a) 1H NMR (400 MHz, CDCl3): δ = 9.09 (s, 1 H), 8.53 (d, J = 4.8 Hz, 1 H), 8.14 (s, 1 H), 8.01 (d, J = 8.3 Hz, 1 H), 7.82 (t, J = 8.8 Hz, 1 H), 7.61 (d, J = 8.5 Hz, 1 H), 7.38 (d, J = 10.0 Hz, 1 H), 7.17 (t, J = 6.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 153.9, 147.8, 139.4, 138.4, 136.6, 126.1, 124.7, 122.4, 121.7, 120.3, 118.3, 113.4. Anal. Calcd for C12H8BrN3: C, 52.58; H, 2.94; N, 15.33. Found: C, 52.62; H, 3.18; N, 15.19.
  • 15 Representative Procedure for N-Heteroarylation of Indoles and Indazoles A mixture of MnF2 (Sigma-Aldrich, 98% purity, 0.074–0.147 mmol), N-heterocycles (0.735 mmol), Cs2CO3 (1.470 mmol), heteroaryl halide (1.103 mmol), trans-1,2-diamino-cyclohexane (0.147–0.294 mmol), and H2O (0.1 mL) were added to a reaction vial, and a screw cap was fitted to it. The reaction mixture was stirred under air in a closed system at 130 °C for 24 h. After cooling to r.t., the mixture was diluted with CH2Cl2 and filtered through a pad of Celite®. The combined organic extracts were dried with anhyd Na2SO4, and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography to afford the N-heteroarylated product. The identity and purity of known products were confirmed by 1H NMR and 13C NMR spectroscopic analysis. Following the general procedure using 7-azaindole (87 mg, 0.735 mmol) and 3-iodopyridine (226 mg, 1.1025 mmol) provided 129 mg (90% yield) of the coupling product 3a as a brown solid after purification by flash chromatography (hexane–EtOAc = 70:30) of the crude oil.