Synlett 2012; 23(16): 2421-2425
DOI: 10.1055/s-0032-1316770
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Conformational Analysis of Fluorinated Pipecolic Acids

Sukhdev Singh
a   Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques – UMR 8601 CNRS/Université Paris Descartes, UFR Biomédicale, 45, Rue des Saints-Pères, 75270 Paris Cedex 06, France   Fax: +33(1)42868387   Email: hamid.dhimane@parisdescartes.fr
b   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India
,
Claire-Marie Martinez
a   Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques – UMR 8601 CNRS/Université Paris Descartes, UFR Biomédicale, 45, Rue des Saints-Pères, 75270 Paris Cedex 06, France   Fax: +33(1)42868387   Email: hamid.dhimane@parisdescartes.fr
,
Sandrine Calvet-Vitale
a   Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques – UMR 8601 CNRS/Université Paris Descartes, UFR Biomédicale, 45, Rue des Saints-Pères, 75270 Paris Cedex 06, France   Fax: +33(1)42868387   Email: hamid.dhimane@parisdescartes.fr
,
Ashok K. Prasad
b   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India
,
Thierry Prangé
c   Laboratoire de Cristallographie et RMN Biologiques – UMR 8015 CNRS/Université Paris Descartes, Faculté de Pharmacie 4, Avenue de l’Observatoire, 75270 Paris Cedex 06, France
,
Peter I. Dalko
a   Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques – UMR 8601 CNRS/Université Paris Descartes, UFR Biomédicale, 45, Rue des Saints-Pères, 75270 Paris Cedex 06, France   Fax: +33(1)42868387   Email: hamid.dhimane@parisdescartes.fr
,
Hamid Dhimane*
a   Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques – UMR 8601 CNRS/Université Paris Descartes, UFR Biomédicale, 45, Rue des Saints-Pères, 75270 Paris Cedex 06, France   Fax: +33(1)42868387   Email: hamid.dhimane@parisdescartes.fr
› Author Affiliations
Further Information

Publication History

Received: 26 April 2012

Accepted after revision: 30 July 2012

Publication Date:
14 September 2012 (online)


Abstract

A short sequence to methyl cis- and trans-5-fluoro pipecolate is described via electrophilic fluorination of a pipecolate-based endocyclic enecarbamate by using Selectfluor® as a fluorinating agent. Methyl 5,5-difluoro pipecolate was also obtained by difluorodeoxygenation of the corresponding ketone, which was obtained in two steps from the same enecarbamate. The conformational profile of both methyl 5-fluoropipecolate isomers was investigated by NMR spectroscopy in solution and X-ray crystallography of the corresponding piperidinium picrates.

Supporting Information

 
  • References

    • 1a Briggs CR. S, O’Hagan D, Howard JA. K, Yufit DS. J. Fluorine Chem. 2003; 119: 9
    • 1b Schüler M, O’Hagan D, Slawin AM. Z. Chem. Commun. 2005; 4324
    • 1c O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 1d Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2a Kukhar VP, Soloshonok VA In Fluorine-Containing Amino Acids. Synthesis and Properties . John Wiley and Sons; Chichester: 1995
    • 2b Sutherland A, Willis CL. Nat. Prod. Rep. 2000; 17: 621
    • 2c Yoder NC, Kumar K. Chem. Soc. Rev. 2002; 31: 335
    • 2d Qiu S.-L, Meng W.-D, Qing F.-L. Tetrahedron 2004; 60: 6711
    • 2e Mathad RI, Gessier F, Seebach D, Jaun B. Helv. Chim. Acta 2005; 88: 266
    • 2f Smits R, Cadicamo CD, Burger K, Koksch B. Chem. Soc. Rev. 2008; 37: 1727
    • 3a Eberhardt ES, Panasik NJr, Raines RT. J. Am. Chem. Soc. 1996; 118: 12261
    • 3b Renner C, Alefelder S, Bae JH, Budisa N, Huber R, Moroder L. Angew. Chem. Int. Ed. 2001; 40: 923
    • 3c Hodges JA, Raines R. J. Am. Chem. Soc. 2003; 125: 9262
    • 3d Steiner T, Hess P, Hyun Bae J, Wiltschi B, Moroder L, Budisa N. PLoS ONE 2008; 3: e1680
    • 3e Thomas CA, Talaty ER, Bann JG. Chem. Commun. 2009; 3366
  • 4 Golubev AS, Schedel H, Radics G, Fioroni M, Thust S, Burger K. Tetrahedron Lett. 2004; 45: 1445
    • 5a Demange L, Ménez A, Dugave C. Tetrahedron Lett. 1998; 39: 1169
    • 5b Demange L, Cluzeau J, Ménez A, Dugave C. Tetrahedron Lett. 2001; 42: 651
  • 6 Mykhailiuk PK, Shishkina SV, Shishkin OV, Zaporozhets OA, Komarov IV. Tetrahedron 2011; 67: 3091
    • 7a Le Corre L, Dhimane H. Tetrahedron Lett. 2005; 46: 7495
    • 7b Le Corre L, Kizirian J.-C, Levraud C, Boucher J.-L, Bonnet V, Dhimane H. Org. Biomol. Chem. 2008; 6: 3388

      First we optimized the sequences with racemic 1,7 then we used enantiopure (S)-1, which was prepared, in four steps, from l-lysine according to:
    • 8a Shono T, Matsumura Y, Inoue K. J. Chem. Soc., Chem. Commun. 1983; 1169
    • 8b Ludwig C, Wistrand LG. Acta Chem. Scand. 1994; 48: 367
    • 8c David M, Dhimane H, Vanucci-Bacqué C, Lhommet G. Synlett 1998; 206
  • 9 Use of (PhSO2)2NF as electrophilic fluorinating source in MeOH resulted in production of an inseparable mixture of 6a and methyl 1-methoxycarbonyl-5-fluoro-6-[N-(phenyl-sulfonyl)pheylsulfonamido]pipecolate
    • 10a Nyffeler PT, Gonzalez Durón S, Burkart MD, Vincent SP, Wong C.-H. Angew. Chem. Int. Ed. 2005; 44: 192
    • 10b Albert M, Dax K, Ortner J. Tetrahedron Lett. 1998; 54: 4839
    • 10c Vincent SP, Burkart MD, Tsai C.-Y, Zhang Z, Wong C.-H. J. Org. Chem. 1999; 64: 5264
  • 11 Following a referee’s remark regarding the effect of the nucleophile/co-solvent on the diastereoselectivity, additional experiments were carried out by using AcOH or EtOH instead of H2O or MeOH in the first step of the sequence 165. Similar diastereoselectivities to those observed with MeOH and H2O were obtained when 1 was reacted with Selectfluor® in the presence of AcOH–MeCN prior to reductive deacetoxylation with Et3SiH–MeSO3H (trans-5/cis-5 = 63:37); while fluoroethoxylation in EtOH–MeCN and subsequent deoxygenation with Et3SiH–BF3·OEt2 resulted in a great amount of defluorinated compound 7 (5/7 = ca. 1:1) with trans-5/cis-5 = 55:45. Actually we found that the latter is an apparent diastereoselctivity; indeed, treatment of trans-5/cis-5 = 40:60 mixture with Et3SiH–BF3·OEt2 in CDCl3 (for NMR monitoring) revealed that under these conditions, trans-5 is reduced much faster than cis-5. Probably, for stereoelectronic reasons, the fluorine atom in trans-5 is likely more prone to BF3-assisted nucleophilic displacement with triethylsilane; indeed, according to NMR analysis, F–C5 is axially oriented in trans-5 while it is equatorially oriented in cis-5 (Scheme 4)
    • 12a Jung ME, Lyster MA. J. Chem. Soc. Chem. Commun. 1978; 315
    • 12b Demizu Y, Shiigi H, Mori H, Matsumoto K, Onomura O. Tetrahedron: Asymmetry 2008; 19: 2659
  • 13 Noteworthy, separation of cis-9 and trans-9 by column chromatography is much easier than separation of isomers of 5 or 6
    • 14a Berthelot J.-P, Jacquesy J.-C, Levisalles J. Bull. Soc. Chim. Fr. 1971; 1896
    • 14b Terui Y, Tori K. J. Chem. Soc., Perkin Trans. 2 1975; 127
    • 15a Thibaudeau C, Plavec J, Chattopadhyaya J. J. Org. Chem. 1998; 63: 4967
    • 15b Snyder JP, Chandrakumar NS, Sato H, Lankin DC. J. Am. Chem. Soc. 2000; 122: 544
    • 15c Abraham RJ, Medforth CJ, Smith PE. J. Comput. Aid Mol. Des. 1991; 5: 205
  • 16 The solution population of the form with an axial fluorine atom (nax) was determined according to the 3 J value method (ref. 14): nax = (3 J obs3 J ee)/(3 J aa3 J ee), where 3 J obs is the observed coupling constant between F-5 and the H-6 which is trans to F-5, 3 J ee = 12.4 and 3 J aa = 39.3 Hz are the extreme values for H6ax,F5ax and H6eq,F5eq coupling constants, respectively, according to ref. 15
    • 17a Lankin DC, Chandrakumar NS, Rao SN, Spangler DP, Snyder JP. J. Am. Chem. Soc. 1993; 115: 3356
    • 17b Sun A, Lankin DC, Hardcastle K, Snyder JP. Chem. Eur. J. 2005; 11: 1579
  • 18 Picrate of cis-10: monoclinic C13H13FN4O9, P21/c, a = 14.784(1), b = 6.666(1), c = 17.308(1) Å, β = 111.97(5)°; R = 0.057 for 1484 Fo. Picrate of trans-10: triclinic C13H13FN4O9, P-1, a = 8.819(1), b = 9.966(1), c = 11.449(1) Å, α = 91.58(4), β = 111.48(5), γ = 116.08(4). R = 0.079 for 3501 Fo. Coordinates deposited with the Cambridge Crystallographic Data Centre, CCDC 811750 (cis-10) and CCDC 811751 (trans-10). Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax:+44 (1223)336033 or email: deposit@ccdc.cam.ac.uk]
  • 19 Procedure and Data for the Synthesis of Picrates 10 To the mixture of diastereomers of compound 5 (3.1 mmol) in MeCN (15 mL) were added TMSCl (9.3 mmol) and NaI (9.3 mmol) at r.t., and the reaction mixture was stirred for 2 h. After completion of the reaction (monitored by TLC), the solvent was removed under vacuum, then H2O (30 mL) was added to the residue and stirred for 5 min more. The reaction mixture was extracted with CH2Cl2 (3 × 30 mL), then the combined organic layers were washed with sat. aq solution of Na2S2O3 (30 mL). The organic layer was dried over MgSO4 and concentrated in vacuo to obtain the crude mixture of diastereomers 9 which were purified and easily separated by column chromatography using 1% MeOH in CH2Cl2 as eluent. The first fraction was obtained as a pure trans-9 isomer and the second one as pure cis- 9 isomer, in 92% overall yield. Methyl trans-(±)-5-Fluoropipecolate (trans-9) Obtained as colorless liquid. IR (neat): νmax = 1039, 1205, 1438, 1738, 2957, 3347 cm–1. 1H NMR (500 MHz, CDCl3): δ = 1.63–1.77 (2 H, m), 2.04–2.23 (2 H, m), 2.51 (1 H, br s), 2.80 (1 H, ddd, J = 12.2, 8.0, 6.6 Hz), 3.34 (1 H, dddd, J = 13.3, 12.3, 4.1, 1.6 Hz), 3.46 (1 H, dd, J = 7.4, 3.8 Hz), 3.75 (3 H, s), 4.56 (1 H, dtt, J = 48.6, 8.3, 4.2 Hz). 13C NMR (125 MHz, CDCl3): δ = 26.15 (d, 3 J CF = 7.7 Hz), 29.56 (d, 2 J CF = 20.0 Hz), 48.88 (d, 2 J CF = 24.5 Hz), 52.25, 56.94, 87.42 (d, 1 J CF = 173.9 Hz), 173.08. MS: m/z calcd [M + H]+ for C7H12FNO2: 162; found: 162. For trans-(2S,5R)-9: [α]D 28 –3.6 (c 0.9, CH2Cl2). Methyl cis-(±)-5-Fluoropipecolate (cis-9) Obtained as colorless liquid. IR (neat): νmax = 1047, 1218, 1443, 1742, 2957, 3373 cm–1. 1H NMR (500 MHz, CDCl3): δ = 1.79–2.17 (4 H, m), 2.87 (1 H, ddd, J = 35.3, 14.2, 2.0 Hz), 3.26 (1 H, dddd, J = 14.2, 10.9, 3.6, 2.3 Hz), 3.44 (1 H, ddd, J = 7.4, 6.4, 1.7 Hz), 3.75 (3 H, s), 4.60 (1 H, dddt, J = 47.3, 4.4, 3.5, 2.2 Hz). 13C NMR (125 MHz, CDCl3): δ = 24.4, 28.81 (d, 2 J CF = 21.3 Hz), 48.83 (d, 2 J CF = 24.5 Hz), 52.06, 57.56, 85.71 (d, 1 J CF = 170.3 Hz), 173.34. MS: m/z calcd [M + H]+ for C7H12FNO2: 162; found: 162. For cis-(2S,5S)-9: [α]D 28 –16.3 (c 0.625, CH2Cl2). In a 50 mL conical flask, compound trans-9 (or cis-9; 0.277 mmol) was mixed with picric acid (0.277 mmol) in EtOH (2 mL). The resulting mixture was heated for 5 min and cooled to r.t. EtOH was removed under vacuum, and the residue was recrystallized with Et2O, CH2Cl2–MeOH to grow crystals of compound trans- 10 (or cis- 10). trans-(±)-5-Fluoro-2-(carbomethoxy)piperidin-1-ium-2′,4′,6′-trinitrophenolate (trans-10) Obtained as yellow crystals. 1H NMR (500 MHz, MeOD): δ = 1.88–2.44 (4 H, m), 3.39 (1 H, ddd, J = 13.7, 9.3, 5.6 Hz), 3.65 (1 H, ddd, J = 26.5, 13.6, 2.8 Hz), 3.86 (3 H, s), 4.34 (1 H, dd, J = 6.0, 4.9 Hz), 4.95 (1 H, dtt, J = 46.0, 5.8, 3.1 Hz), 8.77 (2 H, s). 13C NMR (125 MHz, MeOD): δ = 22.39 (d, 3 J CF = 6.4 Hz), 27.3 (d, 2 J CF = 20.9 Hz), 46.70 (d, 2 J CF = 25.4 Hz), 54.83, 56.58, 86.16 (d, 1 J CF = 173.0 Hz), 127.51, 129.46, 144.33, 164.18, 170.34. ESI-HRMS: m/z calcd for C7H13FNO2 +: 162.0930; found: 162.0924 (for piperidinium cation). cis-(±)-5-Fluoro-2-(carbomethoxy)piperidin-1-ium-2′,4′,6′-trinitrophenolate (cis-10) Obtained as yellow crystals. 1H NMR (500 MHz, MeOD): δ = 1.87–2.31 (4 H, m), 3.39 (1 H, ddd, J = 38.5, 13.8, 4.6 Hz), 3.68 (1 H, ddd, J = 13.8, 10.6, 3.4 Hz), 3.83 (3 H, s), 4.15 (1 H, dt, J = 11.6, 2.9 Hz), 5.04 (1 H, dd, J = 45.4, 4.4 Hz), 8.76 (2 H, s). 13C NMR (125 MHz, MeOD): δ = 22.39, 28.53 (d, 2 J CF = 21.3 Hz), 48.82 (d, 2 J CF = 21.3 Hz), 54.65, 58.18, 85.81 (d, 1 J CF = 172.1 Hz), 127.49, 130.12, 144.03, 163.47, 170.48. ESI-HRMS: m/z calcd for C7H13FNO2 +: 162.0930; found: 162.0925 (for piperidinium cation)
  • 20 See Supporting Information for experimental procedures and analytical data of other compounds (410)