Synlett 2012; 23(16): 2371-2374
DOI: 10.1055/s-0032-1317045
letter
© Georg Thieme Verlag Stuttgart · New York

Bicatalytic Allylation–Cross-Metathesis Reactions as γ-Carbonyl Cation Equivalents

Jake R. Henkie
Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada, Fax: +1(519)9737098   Email: jgreen@uwindsor.ca
,
Sugadar Dhaliwal
Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada, Fax: +1(519)9737098   Email: jgreen@uwindsor.ca
,
James R. Green*
Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada, Fax: +1(519)9737098   Email: jgreen@uwindsor.ca
› Author Affiliations
Further Information

Publication History

Received: 19 June 2012

Accepted: 19 July 2012

Publication Date:
24 August 2012 (online)


Abstract

The products corresponding to the reactions of arenes and γ-carbonyl cations may be obtained by a one-pot, bicatalytic process involving InCl3-catalyzed arene allylation and cross metathesis with electron-deficient alkenes. The process is successful with electronically neutral and electron-rich arenes, and modestly Lewis basic donor groups are tolerated with an increase in InCl3 loading from 10 mol% to 15 mol%, and in one case, 20 mol%.

Supporting Information

 
  • References


    • For selected papers on carbonyl- or donor–acceptor-substituted cyclopropanes, see:
    • 2a Qu J.-P, Deng C, Zhou J, Sun X.-L, Tang Y. J. Org. Chem. 2009; 74: 7684
    • 2b Lifchits O, Alberico D, Zakharian I, Charette AB. J. Org. Chem. 2008; 73: 6838 ; and references therein
    • 2c Hu B, Xing S, Wang Z. Org. Lett. 2008; 10: 5481
    • 2d Tang J, Ren J, Wang Z. Tetrahedron Lett. 2008; 49: 6659
    • 2e Yu M, Pagenkopf BL. Tetrahedron 2005; 61: 321
    • 2f Harrington PA, Kerr MA. Tetrahedron Lett. 1997; 38: 5949
    • 2g Danishefsky S. Acc. Chem. Res. 1979; 12: 66
    • 3a Taj RA, Green JR. J. Org. Chem. 2010; 75: 8258
    • 3b Green JR, Tjeng AA. J. Org. Chem. 2009; 74: 7411
    • 3c Green JR. Chem. Commun. 1998; 1751
    • 3d Vizniowski CS, Green JR, Breen TL, Dalacu AV. J. Org. Chem. 1995; 60: 7496

      For recent reviews on the Nicholas reaction, see:
    • 4a Diaz DD, Betancort JM, Martin VS. Synlett 2007; 343
    • 4b Teobald BJ. Tetrahedron 2002; 58: 4133
    • 4c Green JR. Curr. Org. Chem. 2001; 5: 809
    • 4d Fletcher AJ, Christie SD. R. J. Chem. Soc., Perkin Trans 1 2000; 1657
    • 4e Welker ME. Curr. Org. Chem. 2001; 5: 785
    • 4f Müller TJ. J. Eur. J. Org. Chem. 2001; 2021
    • 4g Omae I. Appl. Organomet. Chem. 2007; 21: 318
    • 4h Bromfield KM, Gradén H, Ljungdahl N, Kann N. Dalton Trans. 2009; 5051
    • 5a Green JR, Carroll MK. Tetrahedron Lett. 1991; 32: 1141
    • 5b Zhou T, Green JR. Tetrahedron Lett. 1993; 34: 4497
    • 5c Enders D, Finkham M. Synlett 1993; 401
    • 5d Charlton MA, Green JR. Can. J. Chem. 1997; 75: 965
    • 5e Enders D, Jandeleit B, Von Berg S. Synlett 1997; 421 ; and references therein
    • 5f Enders D, Jandeleit B, von Berg S, Raabe G, Runsink J. Organometallics 2001; 20: 4312

      For reviews including γ-carbonyl cation equivalents and their vinylogous homologues by way of iron dienyl cations, see:
    • 6a Pearson AJ. Adv. Met.-Org. Chem. 1988; 1: 1 ; and references therein
    • 6b Pearson AJ. Iron Compounds in Organic Synthesis . Academic; London: 1994. Chap. 5
    • 6c Donaldson WA, Chaudhury S. Eur. J. Org. Chem. 2009; 3831
    • 6d Donaldson WA. Curr. Org. Chem. 2000; 4: 837

      For stoichiometric allylmolybdenum cases, see:
    • 7a Zhang Y, Liebeskind L. J. Am. Chem. Soc. 2005; 127: 11258
    • 7b Coombs TC, Zhang Y, Garnier-Ambland EC, Liebeskind LS. J. Am. Chem. Soc. 2009; 131: 876

      Palladium:
    • 8a Jackson WR, Strauss JU. G. Tetrahedron Lett. 1975; 2591
    • 8b Tsuji J, Ueno H, Kobayashi Y, Okumoto H. Tetrahedron Lett. 1981; 21: 2573
    • 8c Nemoto T, Fukuda T, Matsumoto T, Hitomi T, Hamada Y. Adv. Synth. Catal. 2005; 347: 1504
    • 8d Molybdenum: Trost BM, Lautens M. Organometallics 1983; 2: 1687
    • 8e Iridium: Baeza A, Casas J, Nájera C, Sansano JM. J. Org. Chem. 2006; 71: 3837
    • 9a Kuhn O, Mayr H. Angew. Chem. Int. Ed. 1999; 38: 342
    • 9b Troshin K, Mayer P, Mayr H. Organometallics 2012; 31: 2416

      For selected papers, see:
    • 10a Trost BM, Li C. J. Am. Chem. Soc. 1994; 116: 3167
    • 10b Lu X, Zhang C, Xu Z. Acc. Chem. Res. 2001; 34: 535
    • 11a Zhang Z, Widenhoefer RA. Org. Lett. 2008; 10: 2079
    • 11b Tarselli MA, Liu A, Gagné MR. Tetrahedron 2009; 65: 1785
    • 11c Fang Z, Fu C, Ma S. Chem.–Eur. J. 2010; 16: 3910
    • 11d Fang Z, Fu C, Ma S. Eur. J. Org. Chem. 2011; 1227
    • 11e See also: Zhang M, Jiang H, Dixneuf PH. Adv. Synth. Catal. 2009; 351: 1488
    • 12a Bandini M, Tragni M. Org. Biomol. Chem. 2009; 7: 1501
    • 12b Detz RJ, Hiemstra H, van Maarseveen JH. Eur. J. Org. Chem. 2009; 6263
  • 13 Miyake Y, Uemura S, Nishibayashi Y. ChemCatChem 2009; 1: 342
    • 14a Kaneko M, Hayashi R, Cook GR. Tetrahedron Lett. 2007; 48: 7085
    • 14b Lim HJ, Keum G, Kang SB, Kim Y, Chung BY. Tetrahedron Lett. 1999; 40: 1547
    • 14c For a Rh(I)- or Ir(I)-based catalyst, see: Tsukada N, Yagura Y, Sato T, Inoue Y. Synlett 2003; 1431
    • 14d For cases via Ru(IV) allyl intermediates, see: Fernández I, Hermatschweiler R, Breher F, Pregosin PS, Veiros LF, Calhorda MJ. Angew. Chem. Int. Ed. 2006; 45: 6386
    • 14e For Mo catalysis, see: Shimizu I, Sakamoto T, Kawaragi S, Maruyama Y, Yamamoto A. Chem. Lett. 1997; 26: 137

      For recent reviews, see:
    • 15a Prunet J, Grimaud L In Metathesis in Natural Product Synthesis . Cossy J, Arseniyadis S, Meyer C. Wiley-VCH; Weinheim: 2010: 287-312
    • 15b Waetzig JD, Hanson PR. Chemtracts 2006; 19: 157
    • 15c Connon SJ, Blechert S. Angew. Chem. Int. Ed. 2003; 42: 1900
  • 16 Chatterjee AK, Choi T.-L, Sanders DP, Grubbs RH. J. Am. Chem. Soc. 2003; 125: 11360
  • 17 In the absence of molecular sieves, lower conversions occurred
  • 18 Alcaide C, Almendros P, Luna A. Chem. Rev. 2009; 109: 3817
  • 19 Hong SH, Sanders DP, Lee CW, Grubbs RH. J. Am. Chem. Soc. 2005; 127: 17160
    • 20a Vehlow K, Maechling S, Blechert S. Organometallics 2006; 25: 25
    • 20b Ledoux N, Linden A, Allaert B, Vander Mierde H, Verpoort F. Adv. Synth. Catal. 2007; 349: 1692
    • 21a Representative Procedure: To a suspension of InCl3 (0.0216 g, 0.098 mmol, 15 mol%) and 4 Å molecular sieves (ca. 0.4 g) in CH2Cl2 (6 mL) were added 1,3,5-trimethoxybenzene (0.328 g, 1.95 mmol), NaHCO3 (0.164 g, 1.95 mmol), and allyl bromide (55.0 μL, 0.650 mmol). The mixture was heated to reflux for 20 h. The mixture was removed from the heating source, at which time methyl acrylate (0.18 mL, 2.0 mmol) and Grubbs II precatalyst (0.0143 g, 0.0168 mmol, 2.6 mol%) were added. Following heating to reflux for 10 h, removal of the volatiles under reduced pressure and preparative TLC (PE–Et2O, 2:1) afforded 4a as a colorless solid; yield: 0.1167 g (0.438 mmol, 67%). IR (neat): 3000 (m), 2949 (m), 1716 (s), 1652 (s) cm–1. 1H NMR (500 MHz): δ = 7.05 (dt, J = 15.6, 6.4 Hz, 1 H), 6.14 (s, 2 H), 5.72 (dt, J = 15.6, 1.6 Hz, 1 H), 3.82 (s, 3 H), 3.79 (s, 6 H), 3.69 (s, 3 H), 3.46 (dd, J = 6.4, 1.6 Hz, 2 H). 13C NMR (125 MHz): δ = 167.5, 160.0, 158.7, 148.4, 120.1, 106.4, 90.5, 55.6, 53.3, 51.2, 25.5. MS: m/z = 266 [M+]. HRMS (EI): m/z calcd for C14H18O5: 266.1154; found: 266.1144