Anästhesiol Intensivmed Notfallmed Schmerzther 2012; 47(9): 528-540
DOI: 10.1055/s-0032-1325284
Fachwissen
Intensivmedizin
© Georg Thieme Verlag Stuttgart · New York

Behandlung der traumainduzierten Koagulopathie – Was ist die Evidenz?

Therapy of Trauma-induced coagulopathy – what is the evidence?
Matthias C Guth
,
Lutz Kaufner
,
Christian Kleber
,
Christian von Heymann
Further Information

Publication History

Publication Date:
11 September 2012 (online)

Zusammenfassung

Das zunehmende Verständnis des Phänomens der traumainduzierten Koagulopathie hat zu einer Erweiterung der Therapiestrategien bei der akuten Versorgung polytraumatisierter Patienten geführt. Der Artikel gibt einen Überblick über die aktuellen Empfehlungen zur Therapie basierend auf einer Übersicht der aktuellen Literatur mit besonderer Berücksichtigung der gültigen Leitlinien. Die traumainduzierte Koagulopathie ist ein eigenständiges hochakutes multifaktorielles Krankheitsbild mit signifikantem Einfluss auf die Mortalität schwerstverletzter Patienten. Maßgeblich verantwortlich für das Auftreten und die Ausprägung scheint neben dem Gewebetrauma eine schockbedingte Gewebsminderperfusion zu sein. Verstärkt wird die Koagulopathie durch begleitende Faktoren wie Hypothermie oder Dilution. Diagnose und Therapie einer traumainduzierten Koagulopathie müssen so früh wie möglich beginnen. Standardgerinnungslaborparameter sind bei der Diagnosefindung nur eingeschränkt hilfreich. Die Therapie erfolgt nach dem Konzept der Damage-Control-Resuscitation. Die Substitution großer Mengen an Volumen sollte vermieden und ein mittlerer arterieller Druck von 65mmHg (unter Berücksichtigung der Kontraindikationen!) angestrebt werden. Ein spezifisches Massivtransfusionsprotokoll sollte eingeführt und fortgesetzt werden. Eine Azidose sollte vermieden und durch adäquate Therapie des Schocks behandelt werden. Ein Auskühlen des Patienten sollte durch aktives Wärmemanagement verhindert oder therapiert werden. Eine Hypokalzämie<0,9mmol/l sollte vermieden und kann therapiert werden. Bei massiver Blutung kann eine Transfusion mit Erythrozyten ab einem Hb von 10g/dl(6,2mmol/l) begonnen werden.Wird die Gerinnungstherapie bei Massivtransfusionen mit FFP durchgeführt, sollte ein Verhältnis von FFP zu EK im Bereich von 1:2 bis 1:1 angestrebt werden. Zur Behandlung einer Hyperfibrinolyse nach schwerem Trauma sollte frühzeitig der Einsatz von Tranexamsäureerwogen werden. Bei signifikanter Blutung sollte eine Substitution von Fibrinogen ab einer Konzentration von 1,5g/l(4,41μmol/l)erfolgen. Prothrombinkomplexpräparate können bei fortbestehender schwerer Blutung oder antikoagulatorischer Vormedikation hilfreich sein. Die Indikation zur Thrombozytentransfusion kann bei akuter Blutung ab 100000/μl erfolgen. Bei diffus blutenden Patienten mit V.a.Thombozytopathie kann ein Therapieversuch mit Desmopressin in Erwägung gezogen werden.Wenn eine Faktor XIII(FXIII)-Messung nicht zeitnah möglich ist, kann bei schweren akuten Blutungen eine FXIII-Blindgabe erwogen werden.Bei massiver persistierender Blutung kann, nach Ausschöpfung sämtlicher Therapieoptionen und Schaffung optimaler Rahmenbedingungen, im Einzelfall die Applikation vonrekombinantem aktiviertem Faktor VII (rFVIIa) außerhalb der Zulassungsindikation erwogen werden.

Abstract:

The increasing understanding of trauma-induced coagulopathy has led to an expansion of treatment strategies in the acute management of trauma patients. The aim of this manuscript is to give a summary of current recommendations for the treatment of trauma-induced coagulopathy based on current literature and valid guidelines. Thetrauma-induced coagulopathyis an independentacutemultifactorial diseasewith significantimpact on the mortalityof severelyinjured patients. Largely responsible for the occurrence and severity of trauma-induced coagulopathy seems to be tissue trauma and shock-induced hypoperfusion. Coagulopathy is amplified by accompanying factors such as hypothermia or dilution. Diagnosis and therapy of deranged coagulation should start as soon as possible. Routinely tested coagulation parameters are of limited use to confirm diagnosis. Therapy follows the concept of "damage control resuscitation". Infusion of large volumes should be avoided and a mean arterial pressure of 65mmHg (in consideration of contraindications!) may be aimed.A specific protocol for massive transfusion should be introduced and continued.Acidaemia should be prevented and treated by appropriate shock therapy.Loss of body temperature should be prevented and treated. Hypocalcaemia <0.9 mmol/l should be avoided and may be treated. For actively bleeding patients, packed red blood cells (pRBC) may be given at haemoglobin<10g/dl(0,62mmol/l). If massive transfusion is performed using fresh frozen plasma (FFP), a ratio of FFP to pRBC of 1:2 to 1:1 should be achieved.For treatment of hyperfibrinolysis after severe trauma the use of tranexamic acid should be considered at an early stage. Fibrinogen should be substituted at levels <1,5g/l (4,41μmol/l). Prothrombin complex concentrates may be helpfull for treatment of diffuse bleeding or anticoagulativemedikation. In acute bleeding, platelets may be transfused at a platet count <100000/μl. For diffuse bleeding or thrombocytopathic patients desmopressin might be a therapeutic option.If a factor XIII (FXIII) measurement is not promptly available, a factor XIII blind-dose should be considered in severe ongoing bleeding. The use of recombinant activated coagulation factor VII (rFVIIa) be considered if major bleeding persists despite standard attempts to control bleeding and best practice use of blood components.

Kernaussagen

  • Die traumainduzierte Koagulopathie (TIC) ist ein eigenständiges hochakutes multifaktorielles Krankheitsbild mit signifikantem Einfluss auf die Mortalität schwerstverletzter Patienten.

  • Die Pathophysiologie der akuten TIC basiert auf dem aktuellen zellbasierten Modell der Gerinnung mit der Gewebefaktor(TF)-exprimierenden Zelle im Mittelpunkt.

  • Zentrale Ursache der TIC scheint eine Verletzung des Endothels in Kombination mit einer relevanten systemischen Hypoperfusion („Schock“) zu sein.

  • Hauptverantwortlich für Auftreten und Ausprägung einer TIC sind im Wesentlichen die Faktoren Gewebeverletzung, Minderperfusion / Schock, Verdünnung /Verlust, Hypothermie, Azidose und Inflammation.

  • Der entscheidende Faktor für ein adäquates Management der akuten Gerinnungsstörung nach schwerem Trauma ist die frühzeitige Diagnose.

  • Die Therapie der TIC erfolgt nach dem Konzept der Damage-Control-Resuscitation und beinhaltet die permissive Hypotension, den Ausgleich von Azidose, Hypokalzämie und Hypothermie sowie die Transfusion von Blutprodukten und die Gabe gerinnungsaktiver Präparate.

  • Entscheidend ist eine adäquate Schocktherapie als Kombination aus Volumenersatz und Gerinnungsoptimierung zur Verhinderung eines Multiorganversagens.

  • Ein spezifisches Massivtransfusionsprotokoll führt zu einer früheren und schnelleren Transfusion mit hohem FFP/ EK-Verhältnis und daher zu einer signifikanten Reduktion der Mortalität polytraumatisierter Patienten.

Ergänzendes Material

 
  • Literaturverzeichnis

  • 1 Centers for Disease Control and Prevention (CDC). Web-based Injury Statistics Query and Reporting System (WISQARS). http://www.cdc.gov/ncipc/wisqars (Stand 12.05.2012) 2009
  • 2 Evans J, van Wessem K, Mc Dougall D et al. Epidemiology of traumatic deaths: comprehensive population-based assessment. World J Surg 2010; 34: 158-163
  • 3 Wafaisade A, Lefering R, Maegele M et al. Coagulation management of bleeding trauma patients is changing in German trauma centers: An analysis from the trauma registry of the German Society for Trauma Surgery. J Trauma 2012; 72: 936-942
  • 4 Kühne C, Ruchholtz S, Buschmann C et al. Polytraumaversorgung in Deutschland. Eine Standortbestimmung. Unfallchirurg 2006; 109: 357-366
  • 5 Peden M, McGee K, Sharma G. The injury chart book: a graphical overview of the global burden injuries. Geneva: World Health Organisation; 2002
  • 6 Floccard B, Rugeri L, Faure A et al. Early coagulopathy in trauma patients: an on-scene and hospital admission study. Injury 2012; 43: 26-32
  • 7 Hess J, Brohi K, Dutton R et al. The coagulopathy of trauma: a review of mechanisms. J Trauma 2008; 65: 748-754
  • 8 Wafaisade A, Wutzler S, Lefering R et al. Drivers of acute coagulopathy after severe trauma: a multivariate analysis of 1987 patients. Emerg Med 2010; 27: 934-939
  • 9 Brohi K, Cohen M, Ganter M et al. Acute coagulopathy of trauma: hypo-perfusion induces systemic anticoagulation and hyper-fibrinolysis. J Trauma 2008; 64: 167-171
  • 10 Brohi K, Singh J, Heron M et al. Acute traumatic coagulopathy. J Trauma 2003; 54: 1127-1130
  • 11 MacLeod J, Lynn M, McKenny M et al. Early coagulopathy predicts mortality in trauma. J Trauma 2003; 55: 39-44
  • 12 Maegele M, Lefering R, Yucel N et al. Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury 2007; 38: 298-304
  • 13 Guyatt G, Gutterman D, Baumann M et al. Grading strength of recommendations and quality of evidence in clinical guidelines: Report from an American College of Chest Physicians task force. Chest 2006; 129: 174-181
  • 14 Brozek J, Akl E, Alonso-Coello P et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines. Part 1 of 3. An overview of the GRADE approach and grading quality of evidence about interventions. Allergy 2009; 64: 669-677
  • 15 Oxford Centre of Evidence-based Medicine (CEBM). Levels of Evidence. http://www.cebm.net/index.aspx?o=1025
  • 16 Council of Europe. Developing a methology for drawing up guidelines on best medical practices.Straßburg: Council of Europe Publishing. 2001
  • 17 Hoffman M. Remodeling the blood coagulation cascade. J Thromb Thrombolysis 2003; 16: 17-20
  • 18 Hoffman M, Monroe D. A cell-based model of hemostasis. Thromb Haemost 2001; 85: 958-965
  • 19 Jesty J, Beltrami E, Willems G. Mathematical analysis of a proteolytic positive-feedback loop: Dependence of lag time and enzyme yields on the initial conditions and kinetic parameters. Biochemistry 1993; 32: 6266-6274
  • 20 Monroe D, Hoffman M, Roberts H. Transmission of a procoagulant signal from tissue factor-bearing cell to platelets. Blood Coagul Fibrinolysis 1996; 7: 459-464
  • 21 Kashuk J, Moore E, Milikan J et al. Major abdominal vascular trauma – a unified approach. J Trauma 1982; 22: 672-679
  • 22 Kashuk J, Moore E, Johnson J et al. Postinjury life threatening coagulopathy: is 1:1 fresh frozen plasma:packed red blood cells the answer?. J Trauma 2008; 65: 261-270
  • 23 Brohi K, Cohen M, Davenport R. Acute coagulopathy of trauma: mechanism, identification and effect. Curr Opin Crit Care 2007; 13: 680-685
  • 24 Deutsche Gesellschaft für Unfallchirurgie. S3-Leitlinie Polytrauma/Schwerverletzten-Behandlung. AWMF-Leitlinien-Register Nr. 012/019 (Stand 01.07.2011). http://www.awmf.org/uploads/tx_szleitlinien/012-019l_S3_Polytrauma_Schwerverletzten-Behandlung_2011-07_01.pdf
  • 25 Rossaint R, Bouillon B, Cerny V et al. Management of bleeding following major trauma: an updated European guideline. Crit Care 2010; 14
  • 26 Brohi K, Cohen M, Ganter M et al. Acute traumatic coagulopathy: initiated by pypoperfusion: modulated through the protein C pathway?. Ann Surg 2007; 245: 812-818
  • 27 Lier H, Krep H, Schöchl H et al. Gerinnungsmanagement bei der Polytraumaversorgung. Anaesthesist 2009; 58: 1010-1026
  • 28 Schöchl H, Frietsch T, Pavelka M et al. Hyperfibrinolysis after major trauma: Differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma 2009; 67: 125-131
  • 29 Schöchl H, Voelckel W, Maegele M et al. Trauma-associated hyperfibrinolysis. Hamostaseologie 2012; 1: 22-27
  • 30 Maegele M, Paffrath T, Bouillon B. Acute traumatic coagulopathy in severe injury. Dtsch Arztebl Int 2011; 108: 827-835
  • 31 Jacob M, Chappel D, Hofmann-Kiefer K et al. The intravascular volume effect of Ringer's lactate is below 20%: a prospective study in humans. Crit Care 2012; 16
  • 32 Brummel-Ziedins K, Whelihan M, Ziedins E et al. The resuscitative fluid you choose may potentiate bleeding. J Trauma 2006; 61: 1350-1358
  • 33 Coats T, Brazil E, Heron M et al. Impairment of coagulation by comonly used resuscitation fluids in human volunteers. Emerg Med 2006; 23: 846-869
  • 34 Innerhofer P, Fries D, Margreiter J et al. The effects of peroperatively administered colloids and crystalloids on primary platelet-mediated hemostasis and clot formation. Anesth Analg 2002; 95: 858-865
  • 35 Mittermayr M, Streif W, Haas T et al. Effects of colloid and crystalloid solutions on endogenous activation of fibrinolysis and resistance of polymerized fibrin to recombinant tissue plasminogen activator added ex vivo. Br J Anaesth 2008; 100: 307-314
  • 36 Mittermayr M, Streif W, Haas T et al. Hemostatic changes after crystalloid or colloid fluid administration during major othopedic surgery: the role of fibrinogen administration. Anesth Analg 2007; 106: 725-731
  • 37 Shafi S, Elliott A, Gentilello L. Is hypothermia simply a marker of shock and injury severety or an independent risk factor for mortality in trauma patients? Analysis of a large national trauma registry. J Trauma 2005; 59: 1081-1085
  • 38 Krishna G, Sleigh J, Rahman H. Physiological predictors of death in exsanguinating trauma patients undergoing conventional trauma surgery. Aust N Z J Surg 1998; 68: 826-829
  • 39 Bernabei A, Levison M, Bender J et al. The effects of hypothermia and injury severity on blood loss during trauma laparotomy. J Trauma 1992; 33: 835-839
  • 40 Cosgriff N, Moore E, Sauaia A et al. Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidoses revisited. J Trauma 1997; 42: 857-861
  • 41 Lier H, Kampe S, Schroeder S. Rahmenbedingungen für eine intakte Hämostase. Anaesthesist 2007; 56: 239-251
  • 42 Wolberg A, Meng Z, Monroe D et al. A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function. J Trauma 2004; 56: 1221-1222
  • 43 Johnston T, Chen Y, Reed R. Functional equivalence of hypothermia to specific clotting factor deficiencies. J Trauma 1994; 37: 413-417
  • 44 Meng Z, Wolberg A, Monroe D et al. The effect of temperature and pH on the activity of factor VIIa: implications for the efficacy of high-dose factor VIIa in hypothermic and acidotic patients. J Trauma 2003; 55: 886-891
  • 45 Dirkmann D, Hanke A, Görlinger K et al. Hypothermia and acidosis synergistically impair coagulation in human whole blood. Anesth Analg 2008; 106: 1627-1632
  • 46 Watts D, Trask A, Soeken K et al. Hypothermic coagulopathy in trauma: effect of varying levels of hypothermia on enzyme speed, platelet function, and fibrinolytic activity. J Trauma 1998; 44: 846-854
  • 47 Tsuei B, Kearney P. Hypothermia in the trauma patient. Injury 2004; 35: 7-15
  • 48 Gentilello L. Advances in the management of hypothermia. Surg Clin N Am 1995; 75: 243-256
  • 49 Djaldetti M, Fishman P, Bessler H et al. pH-induced platelet ultrastructural alerations. A possible mechanism for impaired platelet aggregation. Arch Surg 1979; 114: 707-710
  • 50 Martini W, Dubick M, Pusateri A et al. Does bicarbonate correct coagulation function impaired by acidosis in swine?. J Trauma 2006; 61: 99-106
  • 51 Green FJ, Kaplan M, Curtis L et al. Effect of acid and pepsin on blood coagulation and platelet aggregation. A possible contributor prolonged gastroduodenal mucosal hemorrhage. Gastroenterology 1978; 74: 38-43
  • 52 Rutherford E, Morris J, Reed G et al. Base deficit stratifies mortality and determines therapy. J Trauma 1992; 33: 417-423
  • 53 Davis J, Parks S, Kaups K et al. Admission base deficit predicts transfusion requirements and risk of complications. J Trauma 1996; 41: 769-774
  • 54 Yucel N, Lefering R, Maegerle M et al. Trauma associated severe hemorrhage (TASH)-score: probability of mass transfusion as surrogate for life threatening hemorrhage after multiple trauma. J Trauma 2006; 60: 1228-1236
  • 55 Spahn D, Rossaint R. Coagulopathy and blood component transfusion in trauma. Br J Anaesth 2005; 95: 130-139
  • 56 Zander R, Sümpelmann R. Acid-base status of stored and washed erythrocytes. Anasthesiol Intensivmed Notfallmed Schmerzther 2001; 36: 25-30
  • 57 Levi M, van der Poll T, ten Cate H et al. The cytokine-mediated imbalance between coagulant and anticoagulant mechanisms in sepsis and endotoxaemia. Eur J Clin Invest 1997; 27: 3-9
  • 58 Seitz R, Wolf M, Egbring R et al. The disturbance of hemostasis in septic shock: role of neutrophil elastase and thrombin, effects of antithrombin III and plasma substitution. Eur J Haematol 1989; 43: 22-28
  • 59 Shebuski R, Kilgore K. Role of inflammatory mediators in thrombogenesis. J Pharmacol Exp Ther 2002; 300: 729-735
  • 60 Ganter M, Cohen M, Brohi K et al. Angiopoietin-2, marker and mediator of endothelial activation with prognostic significance early after trauma?. Ann Surg 2008; 247: 320-326
  • 61 Lier H, Böttiger B, Hinkelbein J et al. Coagulation management in multiple trauma: a systematic review. Intensive Care Med 2011; 37: 572-582
  • 62 Maegele M, Lefering R, Wafaisade A et al. Revalidation and update of the TASH-Score: a scoring system to predict the propapility for massive transfusion as a surrogate for life-threatening haemorrhage after severe injury. Vox Sang 2010; 100: 231-238
  • 63 Nunez T, Voskresensky I, Dosset L et al. Early prediction of massive transfusion in trauma: Simple as ABC (Assessment of blood consumption)?. J Trauma 2009; 66: 346-352
  • 64 Chowdhury P, Saayman A, Paulus U et al. Efficacy of standard dose and 30ml/kg fresh frozen plasma in correcting laboratory parameters of haemostasis in critically ill patients. Br J Haematol 2004; 125: 69-73
  • 65 Mann K, Butenas S, Brummel K et al. The dynamics of thrombin formation. Arterioscler Thromb Vasc Biol 2003; 23: 17-25
  • 66 Fries D, Innerhofer P, Schobersberger W. Time for changing coagulation management in trauma-related massive bleeding. Curr Opin Anaesthesiol 2009; 22: 267-274
  • 67 Lier H, Krep H, Schroeder S et al. Preconditions of hemostasisin trauma: a review. The influence of acidosis, hypocalcemia, anemia and hypothermia on functional hemostasis in trauma. J Trauma 2008; 65: 951-960
  • 68 Kaibara M, Iwata H, Ujiie H et al. Rheological analyses of coagulation of blood from different individuals with special reference to procoagulant activity of erythrocytes. Blood Coagul Fibrinolysis 2005; 16: 355-363
  • 69 Sinclair R, Matterham A, Davies S et al. Comparison of thromboelastometry (ROTEM®) with standard plasmatic coagulation testing in paediatric surgery. Br J Anaesth 2012; 108: 36-41
  • 70 Brown L, Aro S, Cohen M et al. A high fresh frozen plasma: Packed red blood cell transfusion ratio decreases mortality in all masively transfused trauma patients regardless of admission international normalized ratio. J Trauma 2011; 71 (Suppl. 03) 358-363
  • 71 Plotkin A, Wade C, Jenkins D et al. A reduction in clot formation rate and strength assessed by thromelastography is indicative of transfusion requirements in patients with penetrating injuries. J Trauma 2008; 64: 64-68
  • 72 Rugeri L, Levrat A, David J et al. Diagnosis of early coagulation abnormalties in trauma patients by rotation thrombelastography. J Thromb Haemost 2007; 5: 289-295
  • 73 Beekly A. Damage control resuscitaion: a sensible approach to the exsanguinating surgical patient. Crit Care Med 2008; 36: 267-274
  • 74 Spinella P, Holcomb J. Resuscitaion and transfusion principles for traumatic hemmorrhagic shock. Blood Rev 2009; 23: 231-240
  • 75 James M, Roche A. Dose-response relationship between plasma ionized calcium concentration and thrombelastography. J Cardiothorac Vasc Anesth 2004; 18: 581-586
  • 76 Lang R, Fellner S, Neumann A et al. Left ventricular contractility varies directliy with blood ionized calcium. Ann Intern Med 1988; 108: 524-529
  • 77 Wong C, Lau C, Cheng C et al. Hypocalcemic myocardial dysfunktion: Short- and long-term improvement with calcium replacement. Am Heart J 1990; 120: 381-386
  • 78 Vincent J, Bredas P, Jankowski S et al. Correction of hypocalcaemia in the critically ill: What is the haemodynamic benefit?. Intensive Care Med 1995; 21: 838-841
  • 79 Cote C, Drop L, Hoaglin D et al. Ionized hypocalcemia after fresh frozen plasma administration to thermally injured children: Effects of infusion rate, duration, and treatment with calcium chloride. Anesth Analg 1988; 67: 152-160
  • 80 Ariyan C, Sosa J. Assessment and management of patients with abnormal calcium. Crit Care Med 2004; 32: 146-154
  • 81 Kauvar D, Holcomb J, Norris G et al. Fresh whole blod transfusion: a controversial military practice. J Trauma 2006; 61: 181-184
  • 82 Spinella P. Warm fresh whole blood transfusion for severe hemorrhage: U.S. military and potential civilian applications. Crit Care Med 2008; 36: 340-345
  • 83 Ho K, Leonard A. Lack of effect of unrefrigerated young whole blood transfusion on patient outcomes after massive transfusion in a cicilian setting. Transfusion 2011; 51: 1669-1675
  • 84 Spinella P, Perkins J, Grathwohl K et al. Warm fresh whole blood is independently associated with improved survival for patients with combat-related traumatic injuries. J Trauma 2009; 66: 69-76
  • 85 Zupna I, Sabovic M, Salobir B et al. The study of anaemia-related haemostasis impairment in haemodialysis patients by in vitro closure time test. Thromb Haemost 2005; 93: 375-379
  • 86 Eberst M, Berkowitz L. Hemostasis in renal disease: pathophysiology and management. Am J Med 1994; 96: 168-179
  • 87 Tangelder G, Teirlinck H, Slaaf D et al. Distribution of blood platelets flowing in arterioles. Am J Physiol 1985; 248: 318-323
  • 88 Peyrou V, Lormeau J, Herault J et al. Contribution of erythrocytes to thrombin generation in whole blood. Thromb Haemost 1999; 81: 400-406
  • 89 Gerrard J, Docherty J, Israels S et al. A reassessment of the bleeding time: association of age, hematocrit, platelet function, von Willebrand factor, and bleeding time thromboxane B2 with the length of the bleeding time. Clin Invest Med 1989; 12: 165-171
  • 90 Santos M, Valles J, Marcus A et al. Enhancement of platelet reactivity and modulation of eicosanoid production by intact erythrocytes. A new approach to platelet activation and recruitment. J Clin Invest 1991; 87: 571-580
  • 91 Iwata H, Kaibara M. Activation of factor IX by erythrocyte membranes causes intrinsic coagulation. Blood Coagul Fibrinolysis 2002; 13: 489-496
  • 92 Iwata H, Kaibara M, Dohmae N et al. Purification, identification, and characterization of elastase on erythrocyte membrane as factor IX-activating enzyme. Biochem Biophys Res Commun 2004; 316: 65-70
  • 93 Small M, Lowe G, Cameron E et al. Contribution of the haematocrit to the bleeding time. Haemostasis 1983; 13: 379-384
  • 94 Ho C. The hemostatic effect of packed red cell transfusion in patients with anemia. Transfusion 1998; 38: 1011-1014
  • 95 Valeri C, Cassidy G, Pivacek L et al. Anemia-induced increase in the bleeding time: implications for treatment of nonsurgical blood loss. Transfusion 2001; 41: 977-983
  • 96 Quaknin-Orlando B, Samama C, Riou B et al. Role of the hematocrit in a rabbit model of arterial thrombosis and bleeding. Anesthesiology 1999; 90: 1451-1461
  • 97 McDonald V, Ryland K. Coagulopathy in trauma: optimising haematological status. Trauma 2008; 10: 109-123
  • 98 Hardy J, de Moerloose P, Samama C. Massive transfusion and coagulopathy: pathophysiology and implications for clinical management. Can J Anaesth 2004; 51: 293-310
  • 99 Tinmouth A., Fergusson D., Yee I. et al. Clinical consequences of red cell storage in the critically ill. Transfusion 2006; 2014-2027
  • 100 Croce M, Tolley E, Claridge J et al. Transfusions result in pulmonary morbidity and death after a moderate degree of injury. J Trauma 2005; 59: 19-23
  • 101 Malone D, Dunne J, Tracy J et al. Blood transfusion, independent of shock severity, is associated with worse outcome in trauma. J Trauma 2003; 54: 898-905
  • 102 Brattstöm O, Granath F, Rossi P et al. Early predictors of morbidity and mortality in trauma patients treated in the intensive care unit. Acta Anaesthesiol Scand 2010; 54: 1007-1017
  • 103 Bundesärztekammer (BÄK). Querschnitts-Leitlinien (BÄK) zur Therapie mit Blutkomponenten und Plasmaderivaten. Aufl. http://www.bundesaerztekammer.de/page.asp?his=0.6.3288.8906 (Stand Mai 2012) 2008 4.
  • 104 Stanworth S, Brunskill S, Hyde C et al. Is fresh frozen plasma clinically effective? A systematic review of randomized controlled trials. Br J Haematol 2004; 126: 139-152
  • 105 Association of Anaesthetists of Great Britain and Ireland (AAGBI). Blood transfusion and the anaethetist: management of massive haemorrhage. Anaesthesia 2010; 65: 1152-1161
  • 106 Kor D, Stubbs J, Gajic O. Perioperative coagulation management – fresh frozen plasma. Best Pract Clin Anaesthesiol 2010; 24: 51-64
  • 107 Johnson J, Moore E, Kashuk J et al. Effect of blood products transfusion on the development of postinjury multiple organ failure. Arch Surg 2010; 145: 973-977
  • 108 Borgman M, Spinella P, Holcomb J et al. The effect of FFP:RBC ratio on morbidity and mortality in trauma patients based on transfusion prediction score. Vox Sang 2011; 101: 44-54
  • 109 Hess J, Dutton R, Holcomb J et al. Giving plasma at a 1:1 ratio with red cells in resuscitation: who might benefit?. Transfusion 2008; 48: 1763-1765
  • 110 de Biasi A, Stansbury L, Dutton R et al. Blood product use in trauma resuscitation: plasma deficit versus plasma ration as predictors of mortality in trauma. Transfusion 2011; 51: 1925-1932
  • 111 Snyder C, Weinberg J, McGwin G et al. The relationship of blood product ratio to mortality: survival benefit or survival bias?. J Trauma 2009; 66: 358-362
  • 112 Shuja F, Shults C, Duggan M et al. Development and testing of freeze-dried plasma for the treatment of trauma-associated coagulopathy. J Trauma 2008; 65: 975-985
  • 113 Steil L, Thiele T, Hammer E et al. Proteomic characterization of freeze-dried human plasma: providing treatment of bleeding disorders without the need for a cold chain. Transfusion 2008; 48: 2356-2363
  • 114 McSwain N, Champion H, Fabian T et al. State of the art fluid resuscitation 2010: Prehospital and immediate transition to the hospital. J Trauma 2011; 70
  • 115 Zink K, Sambasivan CN, Holcomb JB et al. A high ratio of plasma and platelets to packed red blood cells in the first 6 hours of massive transfusion improves outcomes in a large multicenter study. Am J Surg 2009; 197: 565-570
  • 116 Cotton B, Au B, Nunez T et al. Predefined massife transfusion protocolls are associated with a reduction in organ failure and postinjury complications. J Trauma 2009; 66: 41-49
  • 117 Dente C, Shaz B, Nicholas J et al. Improvements in early mortality and coagulopathy are sustained better in patients with blunt trauma after institution of a massive transfusion protocol in a civilian level I trauma center. J Trauma 2009; 66: 1616-1624
  • 118 Hiippala S, Myllya G, Vahtera E. Hemostatic factors and replacement of major blood loss with plasma-poor cell concentrates. Anesth Analg 1995; 81: 360-365
  • 119 British Committee for Standards in Haematology. Guidelines on the management of massive blood loss. Br J Haematol 2006; 135: 634-641
  • 120 Norfolk D, Ancliffe P, Contreras M et al. Consensus Conference on Platelet Transfusion, Royal College of Physicians of Edinburgh, 27-28 November 1997. Synopsis of background papers. Br J Haematol 1998; 101: 609-617
  • 121 Schöchl H. Coagulation management in major trauma. Hamostaseologie 2006; 26: 52-55
  • 122 Levrat A, Gros A, Rugeri L et al. Evaluation of rotation thrombelastography for the diagnosis of hyperfibrinolysis in trauma patients. Br J Anaesth 2008; 100: 792-797
  • 123 Levy J. Pharmacologic methods to reduce perioperative bleeding. Transfusion 2008; 48: 31-38
  • 124 Nichols W, Hultin M, James A et al. Von Willebrand disease (VWD): evidence-based diagnosis and management guidelines, the National Heart, Lung, and Blood Institute (NHLBI) Expert Panel report (USA). Haemophilia 2008; 14: 171-232
  • 125 Sambasivan C, Kunio N, Nair P et al. High ratios of plasma and platelets to packed red blood cells do not affect mortality in nonmassively transfused patients. J Trauma 2011; 71 (Suppl. 03)
  • 126 Khan H, Belsher J, Yilmaz M et al. Fresh-frozen plasma and platelet transfusions are associated with development of acute lung injury in critically ill medical patients. Chest 2007; 131: 1308-1314
  • 127 Hendrickson J, Hillyer C. Noninfectious serious hazards of transfusion. Anesth Analg 2009; 108: 759-769
  • 128 Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med 2008; 359: 938-949
  • 129 Karlsson M, Ternstrom L, Hyllner M et al. Plasma fibrinogen level, bleeding, and transfusion after on-pump coronary artery bypass grafting surgery: a prospective observational study. Transfusion 2008; 48: 2152-2158
  • 130 Hiippala S. Dextran and hydroxyethyl starch interfere with fibrinogen assays. Blood Coagul Fibrinolysis 1995; 6: 743-746
  • 131 Samama C. Prothrombin complex concentrates: a brief review. Eur J Anaesthesiol 2008; 25: 784-789
  • 132 Dickneite G, Pragst I. Prothrombin complex concentrate vs fresh frozen plasma for reversal of dilutional coagulopathy in a porcine trauma model. Br J Anaesth 2009; 102: 345-354
  • 133 Fries D, Haas T, Salchner V et al. Gerinnungsmanagement beim Polytrauma. Anaesthesist 2005; 54: 137-144
  • 134 Weeterings C, de Groot P, Adelmeijer J et al. The glycoprotein Ib-IX-V complex contributes to tissue factor-independent thrombin generation by recombinant factor VIIa on the activated platelet surface. Blood 2008; 112: 3227-3233
  • 135 Duchesne J, Mathew K, Marr A et al. Current evidence based guidelines for factor VIIa use in trauma: the good, the bad, and the ugly. Am Surg 2008; 74: 1159-1165
  • 136 Yank V, Tuohy C, Logan A et al. Systematic review: benefits and harms of in-hospital use of recombinant factor VIIa for off-label indications. Ann Intern Med 2011; 154: 529-540
  • 137 Spahn D, Cerny V, Coats T et al. Management of bleeding following major trauma: a european guideline. Crit Care 2007; 11