Subscribe to RSS
DOI: 10.1055/s-0032-1327873
Bestimmung des Degenerationsgrads am hyalinen Gelenkknorpel durch Nah-Infrarot-Spektroskopie (NIRS): Methodenbeschreibung und Literaturübersicht
Evaluation of Cartilage Degeneration by Near Infrared Spectroscopy (NIRS): Methodical Description and Systematic Literature ReviewPublication History
Publication Date:
17 January 2013 (online)

Zusammenfassung
Die Schädigung des hyalinen Gelenkknorpels ist das wesentliche pathophysiologische Moment im Rahmen der Arthroseentwicklung. Während arthroskopischer Operationen zählen Knorpelschäden zu den am häufigsten vorgefundenen Pathologien. Dabei ist die Arthroskopie neben der Kernspintomografie das Verfahren der Wahl, Knorpelschäden zu detektieren. Allerdings ist die arthroskopische Diagnostik von Knorpelschäden rein deskriptiv und subjektiv. Bei der Beurteilung der Gelenkfläche ist es dem Operateur daher nur möglich, scheinbar gesunde Knorpelflächen von Erweichung, mehr oder weniger tief gehender Rissbildung und Flake-Ablösung beziehungsweise vom kompletten Defekt zu unterscheiden. In der Routine erfolgt dies meist durch verschiedene Klassifikationen (zum Beispiel ICRS [International Cartilage Repair Society], Outerbridge, Insall, Jäger-Wirth und andere). Allerdings ist die Validität aufgrund der Subjektivität ausgesprochen schlecht. Spektroskopische Untersuchungsmethoden sind seit Langem etablierte Methoden bei der objektiven Beurteilung von Geweben bei verschiedenen Indikationen. In den letzten Jahren hat sich gezeigt, dass die NIRS (Nah-Infrarot-Spektroskopie) hierzu besonders geeignet ist. Dies liegt daran, dass das bei dieser Technik verwendete NIR-Licht energiereich ist und über Glasfasern nahezu verlustfrei zum Untersuchungsobjekt transportiert werden kann und somit ideal für endoskopische Anwendungen ist. Eine systematische Literaturrecherche zeigt, dass sich auch der Schädigungsgrad des hyalinen Knorpels durch die NIRS relativ sicher objektivieren lässt. Des Weiteren wird eine für die Routineanwendung geeignete Messeinrichtung vorgestellt, die es erlaubt, intraoperativ in Echtzeit den Schädigungsgrad des Knorpels zu evaluieren. Weiterhin werden mögliche Konsequenzen aus der NIRS-basierten Knorpeluntersuchung diskutiert.
Abstract
Damage to hyaline cartilage is the most important pathophysiological tool in the development of osteoarthritis. Cartilage lesions are the most frequent pathological findings during arthroscopic operations. Arthroscopies as well as magnetic resonance tomography are gold standards for detection of cartilage lesions. But the arthroscopic evaluation of cartilage lesions is descriptive and subjective only. The surgeon is able to differentiate between intact cartilage surface, softening, superficial or deep fissure or flake and finally a complete defect. In routine arthroscopy the grading mostly is made by use of different scores [e.g. ICRS (International Cartilage Repair Society), Outerbridge, Insall, Jäger-Wirth or others]. Because the arthroscopic evaluation is subjective the reliability of this method is poor. Spectroscopic methods are established for evaluation of different tissue diseases in different indications. NIRS (near infrared spectroscopy) has become an important method for medical diagnostics in the last years. NIR is very energy-rich and suitable for glass fibre transport without relevant reduction. Insofar this technology may be ideal for endoscopic procedures. Our systematic literature review reveals that NIRS is a sufficient method for an objective diagnosis of cartilage lesions. In the current work we demonstrate an NIRS-based device for intraoperative, real-time cartilage evaluation. Furthermore, we discuss the possible clinical consequences from such measurements.
-
Literatur
- 1 Hempfling H, Bohndorf K, Roemer F. [Acute, traumatic versus chronic cartilage lesions as terms of a medical expertʼs opinion]. Z Orthop Unfall 2008; 146: 381-391
- 2 Aigner T, Soder S. [Histopathological examination of joint degeneration: typing, grading and staging of osteoarthritis]. Pathologe 2006; 27: 431-438
- 3 Pullig O, Pfander D, Swoboda B. [Molecular principles of induction and progression of arthrosis]. Orthopade 2001; 30: 825-833
- 4 Krampla W, Roesel M, Svoboda K et al. MRI of the knee: how do field strength and radiologistʼs experience influence diagnostic accuracy and interobserver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament?. Eur Radiol 2009; 19: 1519-1528
- 5 McNicholas MJ, Brooksbank AJ, Walker CM. Observer agreement analysis of MRI grading of knee osteoarthritis. J R Coll Surg Edinb 1999; 44: 31-33
- 6 Schmid MR, Pfirrmann CW, Koch P et al. Imaging of patellar cartilage with a 2D multiple-echo data image combination sequence. AJR Am J Roentgenol 2005; 184: 1744-1748
- 7 Tiderius CJ, Tjornstrand J, Akeson P et al. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): intra- and interobserver variability in standardized drawing of regions of interest. Acta Radiol 2004; 45: 628-634
- 8 Eckstein F, Gavazzeni A, Sittek H et al. Determination of knee joint cartilage thickness using three-dimensional magnetic resonance chondro-crassometry (3D MR-CCM). Magn Reson Med 1996; 36: 256-265
- 9 Jerosch J, Castro WH, de Waal Malefijt MC et al. [Interobserver variation in diagnostic arthroscopy of the knee joint. “How really objective are arthroscopic findings?”]. Unfallchirurg 1997; 100: 782-786
- 10 Ayral X, Gueguen A, Ike RW et al. Inter-observer reliability of the arthroscopic quantification of chondropathy of the knee. Osteoarthritis Cartilage 1998; 6: 160-166
- 11 Brismar BH, Wredmark T, Movin T et al. Observer reliability in the arthroscopic classification of osteoarthritis of the knee. J Bone Joint Surg Br 2002; 84: 42-47
- 12 Javed A, Siddique M, Vaghela M et al. Interobserver variations in intra-articular evaluation during arthroscopy of the knee. J Bone Joint Surg Br 2002; 84: 48-49
- 13 Cameron ML, Briggs KK, Steadman JR. Reproducibility and reliability of the outerbridge classification for grading chondral lesions of the knee arthroscopically. Am J Sports Med 2003; 31: 83-86
- 14 Marx RG, Connor J, Lyman S et al. Multirater agreement of arthroscopic grading of knee articular cartilage. Am J Sports Med 2005; 33: 1654-1657
- 15 Spahn G, Klinger HM, Hofmann GO. How valid is the arthroscopic diagnosis of cartilage lesions? Results of an opinion survey among highly experienced arthroscopic surgeons. Arch Orthop Trauma Surg 2009; 129: 1117-1121
- 16 Duda GN, Kleemann RU, Bluecher U et al. A new device to detect early cartilage degeneration. Am J Sports Med 2004; 32: 693-698
- 17 Uchio Y, Ochi M, Adachi N et al. Arthroscopic assessment of human cartilage stiffness of the femoral condyles and the patella with a new tactile sensor. Med Eng Phys 2002; 24: 431-435
- 18 Shimizu T, Wakitani S, Tanaka Y et al. Ultrasonic probe is useful for in vivo quantitative assessment of medial femoral condyle articular cartilage. Knee Surg Sports Traumatol Arthrosc 2011; 19: 1895-1900
- 19 Herschel W. Catalogue of one thousand new nebulae and clusters of stars. Phil Trans Roy Soc 1800; 284: 457-499
- 20 Hampson NB, Camporesi EM, Stolp SW et al. Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans. J Appl Physiol 1990; 69: 907-913
- 21 Rolfe P, Wickramasinghe YA, Thorniley MS et al. Fetal and neonatal cerebral oxygen monitoring with NIRS: theory and practice. Early Hum Dev 1992; 29: 269-273
- 22 Klaessens JH, Kolkman RG, Hopman JC et al. Monitoring cerebral perfusion using near-infrared spectroscopy and laser Doppler flowmetry. Physiol Meas 2003; 24: N35-N40
- 23 Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol 2004; 29: 463-487
- 24 Sakata YS, Grinberg OY, Grinberg S et al. Simultaneous NIR-EPR spectroscopy of rat brain oxygenation. Adv Exp Med Biol 2005; 566: 357-362
- 25 Taylor DE, Simonson SG. Use of near-infrared spectroscopy to monitor tissue oxygenation. New Horiz 1996; 4: 420-425
- 26 Wyatt JS, Cope M, Delpy DT et al. Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry. Lancet 1986; 2: 1063-1066
- 27 van den Brand JG, Nelson T, Verleisdonk EJ et al. The diagnostic value of intracompartmental pressure measurement, magnetic resonance imaging, and near-infrared spectroscopy in chronic exertional compartment syndrome: a prospective study in 50 patients. Am J Sports Med 2005; 33: 699-704
- 28 Miura H, McCully K, Hong L et al. Regional difference of muscle oxygen saturation and blood volume during exercise determined by near infrared imaging device. Jpn J Physiol 2001; 51: 599-606
- 29 Hosoi Y, Yasuhara H, Shigematsu H et al. Influence of popliteal vein thrombosis on subsequent ambulatory venous function measured by near-infrared spectroscopy. Am J Surg 1999; 177: 111-116
- 30 Cheatle TR, Potter LA, Cope M et al. Near-infrared spectroscopy in peripheral vascular disease. Br J Surg 1991; 78: 405-408
- 31 Pickup JC, Hussain F, Evans ND et al. In vivo glucose monitoring: the clinical reality and the promise. Biosens Bioelectron 2005; 20: 1897-1902
- 32 Maruo K, Tsurugi M, Tamura M et al. In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy. Appl Spectrosc 2003; 57: 1236-1244
- 33 Maruo K, Oota T, Tsurugi M et al. New methodology to obtain a calibration model for noninvasive near-infrared blood glucose monitoring. Appl Spectrosc 2006; 60: 441-449
- 34 Samann A, Fischbacher CH, Jagemann KU et al. Non-invasive blood glucose monitoring by means of near infrared spectroscopy: investigation of long-term accuracy and stability. Exp Clin Endocrinol Diabetes 2000; 108: 406-413
- 35 Broad NW, Jee RD, Moffat AC et al. Non-invasive determination of ethanol, propylene glycol and water in a multi-component pharmaceutical oral liquid by direct measurement through amber plastic bottles using Fourier transform near-infrared spectroscopy. Analyst 2000; 125: 2054-2058
- 36 Lee J, El-Abaddi N, Duke A et al. Noninvasive in vivo monitoring of methemoglobin formation and reduction with broadband diffuse optical spectroscopy. J Appl Physiol 2006; 100: 615-622
- 37 Bigio IJ, Mourant JR, Los G. Noninvasive, in-situ measurement of drug concentrations in tissue using optical spectroscopy. J Gravit Physiol 1999; 6: 173-175
- 38 Chen Y, Intes X, Chance B. Development of high-sensitivity near-infrared fluorescence imaging device for early cancer detection. Biomed Instrum Technol 2005; 39: 75-85
- 39 Honar AL, Kang KA. Effect of the source and detector configuration on the detectability of breast cancer. Comp Biochem Physiol A Mol Integr Physiol 2002; 132: 9-15
- 40 Li C, Wang W, Wu Q et al. Dual optical and nuclear imaging in human melanoma xenografts using a single targeted imaging probe. Nucl Med Biol 2006; 33: 349-358
- 41 Humblet V, Lapidus R, Williams LR et al. High-affinity near-infrared fluorescent small-molecule contrast agents for in vivo imaging of prostate-specific membrane antigen. Mol Imaging 2005; 4: 448-462
- 42 Marticke JK, Hosselbarth A, Hoffmeier KL et al. How do visual, spectroscopic and biomechanical changes of cartilage correlate in osteoarthritic knee joints?. Clin Biomech (Bristol, Avon) 2010; 25: 332-340
- 43 Spahn G, Plettenberg H, Nagel H et al. Evaluation of cartilage defects with near-infrared spectroscopy (NIR): an ex vivo study. Med Eng Phys 2008; 30: 285-292
- 44 Spahn G, Klinger HM, Baums M et al. Near-infrared spectroscopy for arthroscopic evaluation of cartilage lesions: results of a blinded, prospective, interobserver study. Am J Sports Med 2010; 38: 2516-2521
- 45 Baykal D, Irrechukwu O, Lin PC et al. Nondestructive assessment of engineered cartilage constructs using near-infrared spectroscopy. Appl Spectrosc 2010; 64: 1160-1166
- 46 Brown CP, Bowden JC, Rintoul L et al. Diffuse reflectance near infrared spectroscopy can distinguish normal from enzymatically digested cartilage. Phys Med Biol 2009; 54: 5579-5594
- 47 Brown CP, Jayadev C, Glyn-Jones S et al. Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy. Phys Med Biol 2011; 56: 2299-2307
- 48 Johansson A, Sundqvist T, Kuiper JH et al. A spectroscopic approach to imaging and quantification of cartilage lesions in human knee joints. Phys Med Biol 2011; 56: 1865-1878
- 49 Lai WF, Chang CH, Tang Y et al. Early diagnosis of osteoarthritis using cathepsin B sensitive near-infrared fluorescent probes. Osteoarthritis Cartilage 2004; 12: 239-244
- 50 Marticke JK, Hosselbarth A, Hoffmeier KL et al. How do visual, spectroscopic and biomechanical changes of cartilage correlate in osteoarthritic knee joints?. Clin Biomech (Bristol, Avon) 2010; 25: 332-340
- 51 Mankin HJ, Lippiello L. The glycosaminoglycans of normal and arthritic cartilage. J Clin Invest 1971; 50: 1712-1719
- 52 Spahn G, Plettenberg H, Nagel H et al. Evaluation of cartilage defects with near-infrared spectroscopy (NIR): an ex vivo study. Med Eng Phys 2008; 30: 285-292
- 53 Hofmann GO, Marticke J, Grossstuck R et al. Detection and evaluation of initial cartilage pathology in man: A comparison between MRT, arthroscopy and near-infrared spectroscopy (NIR) in their relation to initial knee pain. Pathophysiology 2010; 17: 1-8
- 54 Spahn G, Plettenberg H, Kahl E et al. Near-infrared (NIR) spectroscopy. A new method for arthroscopic evaluation of low grade degenerated cartilage lesions. Results of a pilot study. BMC Musculoskelet Disord 2007; 8: 47-57
- 55 Spahn G, Klinger HM, Baums M et al. Near-infrared spectroscopy for arthroscopic evaluation of cartilage lesions: results of a blinded, prospective, interobserver study. Am J Sports Med 2010; 38: 2516-2521