Dtsch Med Wochenschr 2013; 138(19): 1019-1022
DOI: 10.1055/s-0032-1333051
Aktuelle Diagnostik & Therapie | Review article
Intensivmedizin
© Georg Thieme Verlag KG Stuttgart · New York

Akutes Lungenversagen – ein Update

ARDS – an update
S. Braune
1   Klinik für Intensivmedizin, Universitätsklinikum Hamburg-Eppendorf
,
S. Kluge
1   Klinik für Intensivmedizin, Universitätsklinikum Hamburg-Eppendorf
› Author Affiliations
Further Information

Publication History

19 December 2012

21 February 2013

Publication Date:
30 April 2013 (online)

Zusammenfassung

Das akute Lungenversagen (ARDS) ist gekennzeichnet durch eine schwere Gasaustauschstörung und bleibt eine Herausforderung für die moderne Intensivmedizin. Die häufigste Ursache für ein ARDS sind Pneumonien sowie eine Sepsis. Die Mortalität beträgt bei schwerem Verlauf bis zu 50 %. Die neue Definition des ARDS unterscheidet drei Schweregrade abhängig von der Schwere der Hypoxämie. Grundlage jeder Therapie ist die Behandlung der auslösenden Grunderkrankung. Die Beatmung erfolgt lungenprotektiv mit niedrigen Tidalvolumina und reduzierten Beatmungsdrücken. Eine intermittierende Bauchlagerung führt bei schwerem ARDS zu einer Mortalitätsreduktion. Extrakorporale Lungenunterstützungsverfahren können bei schwerstem, vital bedrohlichem Lungenversagen einen lebensnotwendigen Gasaustausch sichern, um Zeit für die Heilung der Lunge zu gewinnen und die Beatmungsaggressivität zu reduzieren.

Abstract

The acute respiratory distress syndrome (ARDS) is characterized by severe impairment of gas exchange and remains a challenge for modern intensive care medicine. The most common causes of ARDS are pneumonia and sepsis. The mortality in severe ARDS is as high as 50 %. The new definition of ARDS differentiates three levels of severity dependending on the degree of hypoxaemia. The fundamental basis of therapy is to treat the underlying cause of ARDS. Furthermore, lung protective mechanical ventilation must be applied using low tidal volumes and limiting inspiratory pressures. Intermittend prone positioning can reduce mortality in severe cases of ARDS. In extreme, life threatening cases extracorporeal membrane oxygenation can stabelize gas exchange and serve as a bridge to recovery and means to enable lung protective ventilation.

 
  • Literatur

  • 1 Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342: 1301-1308
  • 2 Ashbaugh DG, Bigelow DB, Petty TL et al. Acute respiratory distress in adults. Lancet 1967; 2: 319-323
  • 3 Bienvenu OJ, Colantuoni E, Mendez-Tellez PA et al. Depressive symptoms and impaired physical function after acute lung injury: a 2-year longitudinal study. Am J Respir Crit Care Med 2012; 185: 517-524
  • 4 Briel M, Meade M, Mercat A et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 2010; 303: 865-873
  • 5 Brun-Buisson C, Richard JC, Mercat A et al. Early corticosteroids in severe influenza A/H1N1 pneumonia and acute respiratory distress syndrome. Am J Respir Crit Care Med 2011; 183: 1200-1206
  • 6 Ferguson ND, Cook DJ, Guyatt GH et al. High-Frequency Oscillation in Early Acute Respiratory Distress Syndrome. N Engl J Med 2013; 368: 795-805
  • 7 Ferguson ND, Fan E, Camporota L et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med 2012; 38: 1573-1582
  • 8 Grasso S, Terragni P, Birocco A et al. ECMO criteria for influenza A (H1N1)-associated ARDS: role of transpulmonary pressure. Intensive Care Med 2012; 38: 395-403
  • 9 Herridge MS, Tansey CM, Matte A et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 2011; 364: 1293-1304
  • 10 Kim SH, Hong SB, Yun SC et al. Corticosteroid treatment in critically ill patients with pandemic influenza A/H1N1 2009 infection: analytic strategy using propensity scores. Am J Respir Crit Care Med 2011; 183: 1207-1214
  • 11 Lellouche F, Lipes J. Prophylactic protective ventilation: lower tidal volumes for all critically ill patients?. Intensive Care Med 2013; 39: 6-15
  • 12 Matthay MA, Brower RG, Carson S et al. Randomized, placebo-controlled clinical trial of an aerosolized beta(2)-agonist for treatment of acute lung injury. Am J Respir Crit Care Med 2011; 184: 561-568
  • 13 Mikkelsen ME, Christie JD, Lanken PN et al. The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med 2012; 185: 1307-1315
  • 14 Needham DM, Colantuoni E, Mendez-Tellez PA et al. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study. BMJ 2012; 344: e2124
  • 15 Nierhaus A, Frings D, Braune S et al. Interventional lung assist enables lung protective mechanical ventilation in acute respiratory distress syndrome. Minerva Anestesiol 2011; 77: 797-801
  • 16 Papazian L, Forel JM, Gacouin A et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010; 363: 1107-1116
  • 17 Peek GJ, Mugford M, Tiruvoipati R et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 2009; 374: 1351-1363
  • 18 Ranieri VM, Rubenfeld GD, Thompson BT et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307: 2526-2533
  • 19 Rice TW, Wheeler AP, Thompson BT et al. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA 2011; 306: 1574-1581
  • 20 Steinberg KP, Hudson LD, Goodman RB et al. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 2006; 354: 1671-1684
  • 21 Sud S, Friedrich JO, Taccone P et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med 2010; 36: 585-599
  • 22 Terragni PP, Del SL, Mascia L et al. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology 2009; 111: 826-835
  • 23 Villar J, Blanco J, Anon JM et al. The ALIEN study: incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med 2011; 37: 1932-1941
  • 24 Young D, Lamb SE, Shah S et al. High-Frequency Oscillation for Acute Respiratory Distress Syndrome. N Engl J Med 2013; 368: 806-813