Synlett 2013; 24(11): 1364-1370
DOI: 10.1055/s-0033-1338938
letter
© Georg Thieme Verlag Stuttgart · New York

Construction of Cyclohepta[b]indoles via Platinum-Catalyzed Intermolecular Formal [4+3]-Cycloaddition Reaction of α,β-Unsaturated Carbene Complex Intermediates with Siloxydienes

Hiroyuki Kusama
Department of Chemistry, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan   Fax: +81(3)57342931   Email: niwasawa@chem.titech.ac.jp
,
Hideyuki Sogo
Department of Chemistry, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan   Fax: +81(3)57342931   Email: niwasawa@chem.titech.ac.jp
,
Kodai Saito
Department of Chemistry, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan   Fax: +81(3)57342931   Email: niwasawa@chem.titech.ac.jp
,
Takuya Suga
Department of Chemistry, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan   Fax: +81(3)57342931   Email: niwasawa@chem.titech.ac.jp
,
Nobuharu Iwasawa*
Department of Chemistry, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan   Fax: +81(3)57342931   Email: niwasawa@chem.titech.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 11 March 2013

Accepted after revision: 16 April 2013

Publication Date:
15 May 2013 (online)


Abstract

Platinum(II)-catalyzed intermolecular formal [4+3]-cycloaddition reaction of α,β-unsaturated carbene complex intermediates with siloxydienes proceeded under mild conditions to give cyclohepta[b]indole derivatives in good yield. The reaction was found to proceed via 1,2-alkyl shift of the carbene complex intermediates obtained by [4+2]-cycloaddition reaction of the unsaturated carbenes with dienes.

 
  • References and Notes

    • 1a Carroll AR, Hyde E, Smith J, Quinn RJ, Guymer G, Forster PI. J. Org. Chem. 2005; 70: 1096
    • 1b Kuehm-Caubère C, Caubère P, Jamart-Grégoire B, Pfeiffer B, Guardiola-Lemaître B, Manechez D, Renard P. Eur. J. Med. Chem. 1999; 34: 51
    • 1c Raveh A, Carmeli S. J. Nat. Prod. 2007; 70: 196
    • 1d Mo S, Krunic A, Chlipala G, Orjala J. J. Nat. Prod. 2009; 72: 894
    • 1e Mo S, Krunic A, Santarsiero BD, Franzblau SG, Orjala J. Phytochemistry (Elsevier) 2010; 71: 2116
    • 1f Rawson TE, Rüth M, Blackwood E, Burdick D, Corson L, Dotson J, Drummond J, Fields C, Georges GJ, Goller B, Halladay J, Hunsaker T, Kleinheinz T, Krell H, Li J, Liang J, Limberg A, McNutt A, Moffat J, Phillips G, Ran Y, Safina B, Ultsch M, Walker L, Wiesmann C, Zhang B, Zhou A, Zhu B, Rüger P, Cochran AG. J. Med. Chem. 2008; 51: 4465
    • 1g Napper AD, Hixon J, McDonagh T, Keavey K, Pons J, Barker J, Yau WT, Amouzegh P, Flegg A, Hamelin E, Thomas RJ, Kates M, Jones S, Navia MA, Saunders JO, DiStefano PS, Curtis R. J. Med. Chem. 2005; 48: 8045
    • 1h Mewshaw RE, Silverman LS, Mathew RM, Kaiser C, Sherrill RG, Cheng M, Tiffany CW, Karbon EW, Bailey MA, Borosky SA, Ferkany JW, Abreu ME. J. Med. Chem. 1993; 36: 1488
    • 1i Kuehm-Caubere C, Caubere P, Jamart-Gregoire B, Negre-Salvayre A, Bonnefont-Rousselot D, Bizot-Espiard J, Pfeiffer B, Caignard D, Guardiola-Lemaitre B, Renard P. J. Med. Chem. 1997; 40: 1201
    • 2a Caubère C, Caubère P, Renard P, Bizot-Espiart J.-G, Jamart-Grègoire B. Tetrahedron Lett. 1993; 34: 6889
    • 2b Liu C, Widenhoefer RA. J. Am. Chem. Soc. 2004; 126: 10250
    • 2c Ishikura M, Kato H. Tetrahedron 2002; 58: 9827
    • 2d Joseph B, Alagille D, Rousseau C, Mérour J. Tetrahedron 1999; 55: 4341
    • 2e Harris M, Grierson DS, Riche C, Husson H. Tetrahedron Lett. 1980; 21: 1957
    • 2f Lu Y, Du X, Jia X, Liu Y. Adv. Synth. Catal. 2009; 351: 1517
    • 3a Horwell DC, McKiernan MJ, Osborne S. Tetrahedron Lett. 1998; 39: 8729
    • 3b Sun K, Liu S, Bec PM, Driver TG. Angew. Chem. Int. Ed. 2011; 50: 1702
  • 4 Amat M, Checa B, Llor N, Molins E, Bosch J. Chem. Commun. 2009; 2935
    • 5a Martin CL, Overman LE, Rohde JM. J. Am. Chem. Soc. 2008; 130: 7568
    • 5b Silvanus AC, Heffernan SJ, Liptrot DJ, Kociok-Köhn G, Andrews BI, Carbery DR. Org. Lett. 2009; 11: 1175
    • 5c Barluenga J, García-Rodríguez J, Suárez-Sobrino ÁL, Tomás M. Chem. Eur. J. 2009; 15: 8800
    • 5d Willis MC, Brace GN, Holmes IP. Angew. Chem. Int. Ed. 2005; 44: 403
    • 5e Barluenga J, Jiménez-Aquino A, Valdés C, Aznar F. Angew. Chem. Int. Ed. 2007; 46: 1529
  • 6 Han X, Li H, Hughes RP, Wu J. Angew. Chem. Int. Ed. 2012; 51: 10390
  • 7 Saito K, Sogou H, Suga T, Kusama H, Iwasawa N. J. Am. Chem. Soc. 2011; 133: 689
  • 8 Theoretical investigation on the Pt(II)-catalyzed [3+2]-cycloaddition reactions: Liu T, Han L, Liu Y, Zhang D, Li W. Comput. Theor. Chem. 2012; 992: 97

    • For recent reviews of transition-metal-catalyzed 1,2-acyloxy migration, see:
    • 9a Marco-Contelles J, Soriano E. Chem. Eur. J. 2007; 13: 1350
    • 9b Marion N, Nolan SP. Angew. Chem. Int. Ed. 2007; 46: 2750
    • 9c Miki K, Uemura S, Ohe K. Chem. Lett. 2005; 34: 1068

      Catalytic generation of unsaturated carbene complex intermediates from alkyne:
    • 10a Nakamura I, Sato Y, Terada M. J. Am. Chem. Soc. 2009; 131: 4198
    • 10b Zhang G, Zhang L. J. Am. Chem. Soc. 2008; 130: 12598
    • 10c Shibata Y, Noguchi K, Tanaka K. J. Am. Chem. Soc. 2010; 132: 7896
    • 10d Peng L, Zhang X, Zhang S, Wang J. J. Org. Chem. 2007; 72: 1192
    • 10e Sanz R, Miguel D, Gohain M, García-García P, Fernández-Rodríguez MA, González-Pérez A, Nieto-Faza O, de Lera ÁR, Rodríguez F. Chem. Eur. J. 2010; 16: 9818
    • 10f Lin G, Li C, Hung S, Liu R. Org. Lett. 2008; 10: 5059
    • 10g Gorin DJ, Davis NR, Toste FD. J. Am. Chem. Soc. 2005; 127: 11260
    • 10h Allegretti PA, Ferreira EM. Org. Lett. 2011; 13: 5924 ; and references cited therein
    • 10i For a review of catalytic generation of α-oxocarbene intermediates from alkynes, see: Xiao J, Li X. Angew. Chem. Int. Ed. 2011; 50: 7226
    • 11a Miki K, Ohe K, Uemura S. J. Org. Chem. 2003; 68: 8505
    • 11b Shapiro ND, Toste FD. J. Am. Chem. Soc. 2008; 130: 9244
    • 11c Garayalde D, Krüger K, Nevado C. Angew. Chem. Int. Ed. 2011; 50: 911
  • 12 During the preparation of this manuscript, Prof. Tang’s report on the same type of reaction appeared. Our reaction conditions are milder (r.t. vs. 100 °C) and their proposed reaction mechanisms are different from ours. See: Shu D, Song W, Li X, Tang W. Angew. Chem. Int. Ed. 2013; 52: 3237
  • 13 The tetracyclic compound 7 was obtained as a single diastereomer because the other diastereomers are too strained to produce
  • 14 Tolman CA. Chem. Rev. 1977; 77: 313

    • For examples of platinum(II)–P(C6F5)3-catalyzed reaction:
    • 15a Hardin AR, Sarpong R. Org. Lett. 2007; 9: 4547
    • 15b Hours AE, Snyder JK. Tetrahedron Lett. 2006; 47: 675
    • 15c Shinde MP, Wang X, Kang EJ, Jang H. Eur. J. Org. Chem. 2009; 6091
  • 16 In the reactions using P(C6F5)3 as ligand, product 6b was obtained as follows: MS 4 Å, 89%; MS 5 Å, 82%; none, 83%.
  • 17 There still remains a possibility of an alternative pathway that the [4+3]-cycloaddition product was obtained to some extent via ring closure of the indole nucleus at the C-3 carbon to the α,β-unsaturated silyl oxonium moiety in a 1,4-addition manner to directly give the seven-membered-ring product (Scheme 5).

    • For a recent review of 1,2-alkyl migration of carbene complex intermediates, see:
    • 18a Crone B, Kirsch SF. Chem. Eur. J. 2008; 14: 3514

    • For some examples of 1,2-alkyl migration of platinum carbene intermediates, see:
    • 18b Kusama H, Ishida K, Funami H, Iwasawa N. Angew. Chem. Int. Ed. 2008; 47: 4903
    • 18c Kusama H, Watanabe E, Ishida K, Iwasawa N. Chem. Asian J. 2011; 6: 2273
    • 18d Kusama H, Miyashita Y, Takaya J, Iwasawa N. Org. Lett. 2006; 8: 289
    • 18e Kusama H, Funami H, Takaya J, Iwasawa N. Org. Lett. 2004; 6: 605
    • 18f Li G, Huang X, Zhang L. Angew. Chem. Int. Ed. 2008; 47: 346
    • 18g Shu X.-Z, Zhao S.-C, Ji K.-G, Zheng Z.-J, Liu X.-Y, Liang Y.-M. Eur. J. Org. Chem. 2009; 117
    • 18h Kong W, Qiu Y, Zhang X, Fu C, Ma S. Adv. Synth. Catal. 2012; 354: 2339
  • 19 Tetracyclic compound 7a was not isomerized to the [4+3]-cycloaddition product 6a under the reaction conditions, and only 7a was recovered.
    • 20a Kusama H, Karibe Y, Onizawa Y, Iwasawa N. Angew. Chem. Int. Ed. 2010; 49: 4269
    • 20b Kusama H, Karibe Y, Imai R, Onizawa Y, Yamabe H, Iwasawa N. Chem. Eur. J. 2011; 17: 4839

      For a review of C–H insertion of metal carbenoids, see:
    • 21a Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704

    • For recent examples of C–H insertion of platinum carbene intermediates, see:
    • 21b Funami H, Kusama H, Iwasawa N. Angew. Chem. Int. Ed. 2007; 46: 909
    • 21c Oh CH, Lee JH, Lee SJ, Kim JI, Hong CS. Angew. Chem. Int. Ed. 2008; 47: 7505
    • 21d Oh CH, Lee JH, Lee SM, Yi HJ, Hong CS. Chem. Eur. J. 2009; 15: 71
  • 22 Selected Compound Data Compound 6a: colorless oil. IR (neat): 3049, 2944, 2867, 1730, 1667, 1458, 1369, 1355, 1149, 1119, 742, 683 cm–1. 1H NMR (500 MHz, CDCl3): δ = 0.95 (t, J = 7.3 Hz, 3 H), 1.09–1.13 (m, 18 H), 1.15–1.25 (m, 3 H), 1.38–1.48 (m, 1 H), 1.48–1.57 (m, 1 H), 1.69 (s, 9 H), 1.70–1.79 (m, 2 H), 2.40 (ddd, J = 3.2, 8.2, 15.4 Hz, 1 H), 2.78 (ddd, J = 2.9, 10.3, 15.4 Hz, 1 H), 3.20 (ddd, J = 2.9, 8.2, 16.9 Hz, 1 H), 3.44–3.53 (m, 2 H), 5.24 (d, J = 8.1 Hz, 1 H), 7.19–7.25 (m, 2 H), 7.38–7.42 (m, 1 H), 8.02–8.07 (m, 1 H). 13C NMR (125 MHz in CDCl3): δ = 12.6, 14.2, 18.04, 18.05, 21.7, 25.3, 28.3, 32.2, 32.4, 39.2, 83.5, 107.4, 115.2, 117.5, 121.7, 122.2, 123.2, 130.2, 135.1, 136.6, 150.8, 153.1. HRMS–FAB: m/z [M]+ calcd for C30H47NO3Si: 497.3325; found: 497.3346. Compound 7a: colorless oil. IR (neat): 3048, 2944, 2867, 1709, 1656, 1478, 1368, 1347, 1224, 1178, 883, 749, 684 cm–1. 1H NMR (500 MHz, CDCl3, 330 K): δ = 0.72 (t, J = 7.4 Hz, 3 H), 0.94–0.99 (m, 2 H), 1.11–1.15 (m, 18 H), 1.15–1.25 (m, 3 H), 1.25–1.44 (m, 2 H), 1.58 (s, 9 H), 2.12–2.20 (m, 2 H), 2.23–2.31 (m, 1 H), 2.47 (s, 1 H), 2.90–3.04 (m, 1 H), 5.16 (s, 1 H), 6.91 (dt, J = 0.9, 7.4 Hz, 1 H), 7.10–7.15 (m, 2 H), 7.68–7.75 (m, 1 H). 13C NMR (125 MHz, CDCl3, 330 K): δ = 12.8, 14.1, 18.0, 19.8, 24.8, 25.8, 27.8, 28.5, 28.9, 39.7, 55.3, 81.3, 107.3, 115.0, 122.3, 124.6, 126.7, 130.1, 145.9, 150.5, 153.2. HRMS–FAB: m/z [M]+ calcd for C30H47NO3Si: 497.3325; found: 497.3329. Compound 6h: colorless oil. IR (neat): 3050, 2942, 2866, 1730, 1655, 1456, 1357, 1132, 1117, 883, 743, 687 cm–1. 1H NMR (500 MHz in CDCl3): δ = 1.06–1.10 (m, 18 H), 1.13–1.23 (m, 3 H), 1.66 (s, 9 H), 1.81–1.93 (m, 2 H), 2.03–2.13 (m, 2 H), 2.76–2.80 (m, 1 H), 3.10 (dd, J = 4.6, 18.2 Hz, 1 H), 3.44 (br d, J = 18.2 Hz, 1 H), 3.53–3.57 (m, 1 H), 5.53 (dd, J = 1.8, 7.9 Hz, 1 H), 7.18–7.22 (m, 2 H), 7.42–7.47 (m, 1 H), 8.05–8.10 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 12.6, 17.97, 17.99, 25.9, 28.2, 28.3, 31.7, 35.6, 37.8, 83.3, 109.4, 115.4, 116.9, 122.1, 123.0, 123.4, 128.8, 133.9, 134.9, 150.7, 154.0. HRMS–FAB: m/z [M]+ calcd for C29H43NO3Si: 481.3012; found: 481.3021. Compound 9: pale yellow oil. IR (neat): 3046, 2945, 2866, 1663, 1598, 1452, 1381, 1367, 1173, 746, 684 cm–1. 1H NMR (500 MHz, CDCl3): δ = 0.75 (d, J = 6.8 Hz, 3 H), 0.89 (d, J = 6.6 Hz, 3 H), 1.02–1.07 (m, 18 H), 1.08–1.18 (m, 3 H), 1.90–2.00 (m, 1 H), 2.06–2.16 (m, 1 H), 2.32 (s, 3 H), 2.41 (ddd, J = 3.2, 6.4, 16.8 Hz, 1 H), 3.11 (ddd, J = 3.2, 11.7, 16.1 Hz, 1 H), 3.23 (t, J = 7.4 Hz, 1 H), 3.64 (ddd, J = 3.5, 6.4, 16.1 Hz, 1 H), 5.12 (dd, J = 0.7, 7.4 Hz, 1 H), 7.14 (d, J = 8.2 Hz, 2 H), 7.21–7.29 (m, 2 H), 7.33–7.36 (m, 1 H), 7.51–7.55 (m, 2 H), 8.22–8.26 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 12.6, 17.97, 17.99, 20.5, 21.5, 21.7, 22.8, 31.7, 35.2, 39.7, 105.9, 115.4, 118.3, 123.3, 123.8, 124.3, 126.1, 129.6, 131.4, 136.1, 136.3, 136.4, 144.5, 152.0. HRMS–FAB: m/z [M]+ calcd for C32H45NO3SSi: 551.2889; found: 551.2881.