Synlett 2013; 24(16): 2170-2172
DOI: 10.1055/s-0033-1339480
letter
© Georg Thieme Verlag Stuttgart · New York

Catalytic Synthesis of Riboside–Amino Acid Hybrids

Agata M. Ochocińska
a   School of Chemistry, Pharmacy and Food Science, University of Reading, Reading RG6 6AD, UK
,
Paul A. Bethel
b   Oncology Innovative Medicines Unit, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
,
Joseph B. Sweeney*
a   School of Chemistry, Pharmacy and Food Science, University of Reading, Reading RG6 6AD, UK
c   Current address: Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire HD1 3DH, UK   Fax: +44(1484)472182   Email: j.b.sweeney@hud.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 21 June 2013

Accepted after revision: 29 June 2013

Publication Date:
12 August 2013 (online)


Abstract

The catalytic synthesis of 3-(2′-glycinoyl)ribose derivatives under mild conditions is described. The key reaction involves silver-catalyzed condensation of isocyanoacetates with 3-ketoriboses.

 
  • References and Notes


    • See, for instance:
    • 1a van der Heden van Noort GJ, van Delft P, Meeuwenoord NJ, Overkleeft HS, van der Marel GA, Filippov DV. Chem. Commun. 2012; 48: 8093
    • 1b Moyle PM, Muir TW. J. Am. Chem. Soc. 2010; 132: 15878
    • 1c van der Heden van Noort GJ, van Delft P, van der Horst MG, Overkleeft HS, van der Marel GA, Filippov DV. J. Am. Chem. Soc. 2010; 132: 5236
    • 2a Saegusa T, Ito Y, Kinoshita H, Tomita S. J. Org. Chem. 1971; 36: 3316
    • 2b Ito Y, Sawamura M, Hayashi T. J. Am. Chem. Soc. 1986; 108: 6405
  • 3 For a review of Lewis acid catalyzed aldol reactions of isocyanoacetates, see: Gulevich AV, Alexander G, Zhdanko AG, Orru RV. A, Nenajdenko VG. Chem. Rev. 2010; 110: 5235

    • For reports of nucleophilic additions to 3-ketonucleosides, see:
    • 4a Shaikh KI, Kumar S, Lundhus L, Bond AD, Sharma PK, Nielsen P. J. Org. Chem. 2008; 74: 1557
    • 4b Ichikawa S, Minakawa N, Shuto S, Tanaka M, Sasaki T, Matsuda A. Org. Biomol. Chem. 2006; 4: 1284
    • 4c Ludwig PS, Schwendener RA, Schott H. Synthesis 2002; 2387
    • 4d McEldoon WL, Wiemer DF. Tetrahedron 1995; 51: 7131
    • 4e Jung PM. J, Burger A, Bielmann J.-F. Tetrahedron Lett. 1995; 36: 1031
    • 4f Bender SL, Mofett KM. J. Org. Chem. 1992; 57: 1646
  • 5 Stereochemistry tentatively assigned by analogy with reported nucleophilic addition reactions of 3-ketoriboses.
  • 6 3a: 1H NMR (250 MHz, CDCl3): δ = 2.00 (dd, J = 4.7, 14.5 Hz, 1 H), 2.37 (dd, J = 5.0, 14.5 Hz, 1 H), 3.18 (dd, J = 7.3, 10.0 Hz, 1 H), 3.30 (s, 1 H), 3.54 (dd, J = 5.2, 10.0 Hz, 1 H), 3.79 (s, 6 H), 3.80 (s, 3 H), 4.19 (dd, J = 5.2, 7.3 Hz, 1 H), 4.96 (d, J = 2.5 Hz, 1 H), 5.07 (dd, J = 4.7, 5.0 Hz, 1 H), 6.74 (d, J = 2.5 Hz, 1 H), 6.80–6.85 (m, 4 H), 7.15–7.41 (m, 8 H). 13C NMR (62.5 MHz, CDCl3): δ = 43.0, 52.6, 55.2, 55.8, 60.9, 70.8, 81.4, 87.0, 92.0, 103.8, 113.0–144.3, 155.8, 158.5, 169.9.
  • 7 4a: 1H NMR (250 MHz, CDCl3): δ = 2.00 (dd, J = 4.7, 14.5 Hz, 1 H), 2.37 (dd, J = 5.0, 14.5 Hz, 1 H), 3.18 (dd, J = 7.3, 10.0 Hz, 1 H), 3.30 (s, 1 H), 3.54 (dd, J = 5.2, 10.0 Hz, 1 H), 3.79 (s, 6 H), 3.80 (s, 3 H), 4.19 (dd, J = 5.2, 7.3 Hz, 1 H), 4.96 (d, J = 2.5 Hz, 1 H), 5.07 (dd, J = 4.7, 5.0 Hz, 1 H), 6.74 (d, J = 2.5 Hz, 1 H), 6.80–6.85 (m, 4 H), 7.15–7.41 (m, 8 H). 13C NMR (62.5 MHz, CDCl3): δ = 45.4, 52.6, 53.5, 55.1, 56.7, 64.4, 80.6, 84.6, 86.9, 104.3, 113.2–158.6, 160.8, 169.3.