Synlett 2014; 25(3): 448-452
DOI: 10.1055/s-0033-1340301
letter
© Georg Thieme Verlag Stuttgart · New York

An Innovative and Atom-Efficient Synthesis of Bioactive 2-Aroylfuran Derivatives Using Macroporous Polymer-Supported Cyanide

Arash Mouradzadegun*
Department of Chemistry, Faculty of Science, Shahid Chamran University, Ahvaz, Iran   Fax: +98(611)3337009   Email: arash_m@scu.ac.ir
,
Fatemeh Abadast
Department of Chemistry, Faculty of Science, Shahid Chamran University, Ahvaz, Iran   Fax: +98(611)3337009   Email: arash_m@scu.ac.ir
› Author Affiliations
Further Information

Publication History

Received: 26 September 2013

Accepted after revision: 28 October 2013

Publication Date:
06 December 2013 (online)


Abstract

A novel and safe approach was developed for the synthesis of bioactive 2-aroyl-3,5-diarylfurans in excellent yields by using a cyanide-impregnated anion-exchange resin as a versatile reagent. The possibility of reusing the polymer-supported reagent makes the process environmentally friendly and economically advantageous.

Supporting Information

 
  • References and Notes

    • 1a Anastas PT, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; Oxford: 1998
    • 1b Benign by Design: Alternative Synthetic Design for Pollution Prevention, ACS Symposium Series 577. Anastas PT, Farris CA. American Chemical Society; Washington DC: 1994
    • 1c Sheldon R In Green Chemistry in the Pharmaceutical Industry . Dunn PJ, Wells AS, Williams MT. Wiley-VCH; Weinheim: 2010. Chap. 1 1
    • 1d Hafez EA. A, Al-Mousawi SM, Moustafa MSh, Sadek KU, Elnagdi MH. Green Chem. Lett. Rev. 2013; 6: 189
    • 1e Shen S.-C, Sun X.-W, Lin G.-Q. Green Chem. 2013; 15: 896
    • 1f Green GM, Peet NP, Metz WA. J. Org. Chem. 2001; 66: 2509
    • 2a Halland N. Synlett 2012; 23: 2969
    • 2b Sinnwell S, Inglis AJ, Davis TP, Stenzel MH, Barner-Kowollik C. Chem. Commun. 2008; 2052
    • 2c Nagano Y, Orita A, Otera J. Adv. Synth. Catal. 2003; 345: 643
    • 2d Sheldon RA. Pure Appl. Chem. 2000; 72: 1233
    • 2e Rao ML. N, Banerjee D, Dhanorkar RJ. Synlett 2011; 1324
    • 2f Zangade SB, Mokle SS, Shinde AT, Vibhute YB. Green Chem. Lett. Rev. 2013; 6: 123
    • 2g Murai M, Yoshida S, Miki K, Ohe K. Chem. Commun. 2010; 46: 3366
    • 2h Ananikov VP, Kashin AS, Hazipov OV, Beletskaya IP, Starikova ZA. Synlett 2011; 2021
    • 2i Lange JH. M, Verhoog S, Sanders HJ, Loevezijn AV, Kruse CG. Tetrahedron Lett. 2011; 52: 3198
    • 2j Sheldon RA. Chem. Soc. Rev. 2012; 41: 1437
    • 2k Williams DB. G, Lawton MC. Green Chem. 2008; 10: 914
    • 2l Rao ML. N, Awasthi DK, Talode JB. Synlett 2012; 23: 1907
    • 3a Dockx J. Synthesis 1973; 441
    • 3b Chesney A. Green Chem. 1999; 1: 209
    • 3c Harland CE. Ion Exchange: Theory and Practice . Royal Society of Chemistry; Cambridge: 1994. Chap. 5
    • 3d Vernon F. Sel. Annu. Rev. Anal. Sci. 1972; 83
    • 3e Toy PH, Shi M. Tetrahedron 2005; 61: 12025

    • 4a Tang E, Chen B, Zhang L, Li W, Lin J. Synlett 2011; 707
    • 4b Tamami B, Iranpoor N, Rezaei R. Synth. Commun. 2003; 33: 3153
    • 4c Dare EO, Liu L.-K, Peng J. Dalton Trans. 2006; 3668
    • 4d Alcalde E, Dinarès I, Ibáñez A, Mesquida N. Chem. Commun. 2011; 47: 3266
    • 4e Verdié P, Ronga L, Cristau M, Amblard M, Cantel S, Enjalbal C, Puget K, Martinez J, Subra G. Synfacts 2011; 1382
    • 4f Solabannavar SB, Desai UV, Mane RB. Green Chem. 2002; 4: 347
    • 4g Sheng S.-R, Liu X.-L, Wang X.-C, Xin Q, Song C.-S. Synthesis 2004; 2833
    • 5a Donnelly DM. X, Meegan MJ In Comprehensive Heterocyclic Chemistry . Vol. 4. Katritzky AR, Rees CW. Pergamon; Oxford: 1984: 657
    • 5b Barancelli DA, Mantovani AC, Jesse C, Nogueira CW, Zeni G. J. Nat. Prod. 2009; 72: 857
    • 5c Kirsch SF. Org. Biomol. Chem. 2006; 4: 2076
    • 5d Cho C.-H, Shi F, Jung D.-I, Neuenswander B, Lushington GH, Larock RC. ACS Comb. Sci. 2012; 14: 403
    • 5e Chen K.-W, Syu S, Jang Y.-J, Lin W. Org. Biomol. Chem. 2011; 9: 2098
    • 5f Reichstein A, Vortherms S, Bannwitz S, Tentrop J, Prinz H, Müller K. J. Med. Chem. 2012; 55: 7273
    • 6a Hou XL, Cheung HY, Hon TY, Kwan PL, Lo TH, Tong SY, Wong HN. C. Tetrahedron 1998; 54: 1955
    • 6b Ji W.-h, Pan Y.-m, Zhao S.-y, Zhan Z.-p. Synlett 2008; 3046
    • 6c Rodríguez A, Moran WJ. Tetrahedron Lett. 2011; 52: 2605
    • 6d Piller FM, Knochel P. Synthesis 2011; 1751
    • 6e Yu C, Lu J, Li T, Wang D, Qin B, Zhang H, Yao C. Synlett 2011; 2420
    • 6f Hou XL, Yang Z, Wong HN. C. Prog. Heterocycl. Chem. 2003; 15: 167
    • 6g Sniady A, Durham A, Morreale MS, Marcinek A, Szafert S, Lis T, Brzezinska KR, Iwasaki T, Ohshima T, Mashima K, Dembinski R. Synfacts 2008; 1084
  • 7 Taniguchi T, Nakamura K, Ogasawara K. Synthesis 1997; 509
    • 8a Kinzer GW, Fentiman AI. Jr, Page TF, Faltz RL, Vite JP, Pitman GB. Nature 1969; 221: 477
    • 8b Silverstein RM. Science 1981; 213: 1326
    • 8c Oehlschlager AC, Johnston BD. J. Org. Chem. 1987; 52: 940
    • 8d Singh S, Guiry PJ. J. Org. Chem. 2009; 74: 5758
  • 9 Lutz RE, Reveley WG. J. Am. Chem. Soc. 1941; 63: 3178
  • 10 Bello AM, Kotra LP. Tetrahedron Lett. 2003; 44: 9271
    • 11a Francesconi I, Wilson WD, Tanious FA, Hall JE, Bender BC, Tidwell RR, McCurdy D, Boykin DW. J. Med. Chem. 1999; 42: 2260
    • 11b Brown CD, Chong JM, Shen L. Tetrahedron 1999; 55: 14233
    • 11c Mortensen DS, Rodriguez AL, Sun J, Katzenellenbogen BS, Katzenellenbogen JA. Bioorg. Med. Chem. Lett. 2001; 11: 2521
    • 11d Jiang S, Tala SR, Lu H, Abo-Dya NE, Avan I, Gyanda K, Lu L, Katritzky AR, Debnath AK. J. Med. Chem. 2011; 54: 572
    • 12a Pedersen CL. Acta Chem. Scand., Ser. B 1975; 29: 791
    • 12b Francesconi I, Patel A, Boykin DW. Synthesis 1999; 61
    • 13a Mouradzadegun A, Gheitasvand N. Phosphorus, Sulfur Silicon Relat. Elem. 2005; 180: 1385
    • 13b Ganjali MR, Norouzi P, Emami M, Golmohamadi M, Pirelahi H, Mouradzadegun A. J. Chin. Chem. Soc (Weinheim, Ger.) 2006; 53: 1209
    • 13c Mouradzadegun A, Pirelahi H. J. Photochem. Photobiol., A 2001; 138: 203
    • 13d Mouradzadegun A, Dianat Sh. J. Heterocycl. Chem. 2009; 46: 778
    • 13e Mouradzadegun A, Ghasem Hezave F, Karimnia M. Phosphorus, Sulfur Silicon Relat. Elem. 2010; 185: 84
    • 13f Mouradzadegun A, Abadast F. Monatsh. Chem. 2013; 144: 375
    • 13g Kiasat AR, Mouradzadegun A, Elahi S, Fallah-Mehrjardi M. Chin. Chem. Lett. 2010; 21: 146
    • 13h Mouradzadegun A, Kiasat AR, Kazemian Fard P. Catal. Commun. 2012; 29: 1
  • 14 Mouradzadegun A, Abadast F. Tetrahedron Lett. 2013; 54: 2641
  • 15 Reaction of Triarylpyrylium Perchlorates 1 with Sodium Cyanide; General Procedure CAUTION: Cyanide salts can be absorbed through the skin and are extremely toxic. The appropriate triarylpyrylium perchlorate (1 mmol) was dissolved in MeCN (10 mL), NaCN (4 mmol) was added, and the mixture was refluxed until the reaction was complete. The solvent was then evaporated under vacuum, and the residue was adsorbed onto silica gel, which was mounted on a silica gel column and eluted with 20:80 Et2O–hexane. The purified product was crystallized from EtOH.
    • 16a Kitchener JA In Ion Exchangers in Organic and Biochemistry . Calmon C, Kressman TR. E. Interscience; New York: 1957
    • 16b Harland CE. Ion Exchange: Theory and Practice . 2nd ed. Royal Society of Chemistry; Cambridge: 1994: 90
  • 17 Polymer-Supported Cyanide Anion Amberlite IRA 910 (chloride ion form) was washed several times with distilled H2O to remove foreign material. The dried resin (100 g) was then stirred with a soln of NaCN (32 g) in H2O (450 mL) for 12 h. The cyanide solution was decanted, and the resin was washed with distilled H2O until the washings gave a negative cyanide test (AgNO3). The water was then decanted and replaced by the solvent to be employed as the reaction medium.
  • 18 Estimation of the Capacity of the Polymer-Supported Cyanide A sample of resin-supported cyanide anion (1.00 g) was stirred for 12 h with KI (830 mg) in H2O (10 mL). The resin was filtered off and washed several times with distilled H2O. The combined filtrate and washings were titrated against 0.1 M aq AgNO3 using a potentiometer. The capacity was generally found to be 1.4 mmol per gram of dry resin. Used resin could be readily regenerated by washing it sequentially with 1 M aq NaCl and aq NaCN.
  • 19 Reaction of Triarylpyrylium Perchlorates 1 with Cyanide-Impregnated Anion-Exchange Resin; General Procedure The appropriate triarylpyrylium salt 1 (1 mmol) was stirred with the cyanide-impregnated Amberlite IRA 910 resin (4 mmol) in refluxing MeCN (10 mL) until the reaction was complete (TLC). The resin was then removed by filtration, and the filtrate was evaporated to give a crude product that was crystallized from EtOH.