Synlett 2014; 25(6): 809-812
DOI: 10.1055/s-0033-1340824
letter
© Georg Thieme Verlag Stuttgart · New York

Access to Chiral Tertiary α-Hydroxy-β-Ynyl Esters via One-Pot Addition and Kinetic Resolution

Hong-Bin Chen*
Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China   Email: hbchan@xmu.edu.cn
,
Wen-Han Lai
Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China   Email: hbchan@xmu.edu.cn
,
Yan Zhao
Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China   Email: hbchan@xmu.edu.cn
,
Dan-Dan Qin
Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China   Email: hbchan@xmu.edu.cn
,
Yuan-Ping Ruan
Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China   Email: hbchan@xmu.edu.cn
,
Zhao-Hui Zhou
Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China   Email: hbchan@xmu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 26 December 2013

Accepted after revision: 22 January 2014

Publication Date:
13 February 2014 (online)


Abstract

Chiral amino alcohol promoted one-pot addition of zinc alkynylides to α-keto esters and kinetic resolution of the resulting tertiary propargylic alcohols was developed. The reaction provided us an alternative approach to access optically active tertiary α-hydroxy-β-ynyl esters with enantiomeric excesses up to 98%.

Supporting Information

 
  • References and Notes


    • For recent reviews, see:
    • 1a Wang Q, Pu L. Synlett 2013; 24: 1340
    • 1b Modern Acetylene Chemistry . Stang PJ, Diederich F. Wiley-VCH; Weinheim: 2008
    • 1c Yadav JS, Chandrasekhar S In Drug Discovery and Development: Drug Development . Vol. 2. Chorghade MS. Wiley; Hoboken: 2006: 141

    • For selected recent examples, see:
    • 1d Trost BM, Quintard A. Angew. Chem. Int. Ed. 2012; 51: 6704
    • 1e Trost BM, Quintard A. Org. Lett. 2012; 14: 4698
    • 1f Liu Z, Byun HS, Bittman R. J. Org. Chem. 2010; 75: 4356
    • 1g Turlington M, Yue Y, Yu XQ, Pu L. J. Org. Chem. 2010; 75: 6941

      For recent reviews, see:
    • 2a Trost BM, Bartlett MJ, Weiss AH, Wangelin AJ. V, Chan VS. Chem. Eur. J. 2012; 18: 16498
    • 2b Turlington M, Pu L. Synlett 2012; 23: 649
    • 2c Trost BM, Weiss AH. Adv. Synth. Catal. 2009; 351: 963

      For selected recent examples, see:
    • 3a Chinkov N, Warm A, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 2957
    • 3b Zhang GW, Meng W, Ma H, Nie J, Zhang WQ, Ma JA. Angew. Chem. Int. Ed. 2011; 50: 3538
    • 3c Tanaka K, Kukita K, Ichibakase T, Kotanib S, Nakajima M. Chem. Commun. 2011; 47: 5614
    • 3d Antczak MI, Cai F, Ready JM. Org. Lett. 2011; 13: 184 ; and references cited therein
    • 4a Youn SW, Kim YH, Hwang JW, Do Y. Chem. Commun. 2001; 996
    • 4b Chen MY, Fang JM. J. Org. Chem. 1992; 57: 2937
    • 4c Solladie-Cavallo A, Suffert J. Tetrahedron Lett. 1984; 25: 1897
    • 5a Infante R, Gago A, Nieto J, Andrés C. Adv. Synth. Catal. 2012; 354: 2797
    • 5b Jiang B, Chen ZL, Tang XX. Org. Lett. 2002; 4: 3451

    • For catalytic asymmetric addition of alkynes to trifluoropyruvate, see:
    • 5c Wang T, Niu JL, Liu SL, Huang JJ, Gong JF, Song MP. Adv. Synth. Catal. 2013; 355: 927
    • 5d Ohshima T, Kawabata T, Takeuchi Y, Kakinuma T, Iwasaki T, Yonezawa T, Murakami H, Nishiyama H, Mashima K. Angew. Chem. Int. Ed. 2011; 50: 6296
    • 5e Aikawa K, Hioki Y, Mikami K. Org. Lett. 2010; 12: 5716

      Optically active tertiary α-hydroxy acids (esters) are key intermediates of many natural products and medicines, selected examples, see:
    • 6a Siegel DS, Piizzi G, Piersanti G, Movassaghi M. J. Org. Chem. 2009; 74: 9292
    • 6b Schuster C, Knollmueller M, Gaertner P. Tetrahedron: Asymmetry 2006; 17: 2430
    • 6c Rozema MJ, Kruger AW, Rohde BD, Shelat B, Bhagavatula L, Tien JJ, Zhang W, Henry RF. Tetrahedron 2005; 61: 4419
    • 6d Prisinzano T, Hsin LW, Folk JE, Flippen-Anderson JL, George C, Jacobson AE, Rice KC. Tetrahedron: Asymmetry 2003; 14: 3285
    • 6e Grover PT, Bhongle NN, Wald SA, Senanayake CH. J. Org. Chem. 2000; 65: 6283
    • 6f Wood JL, Stoltz BM, Dietrich HJ, Pflum DA, Petsch DT. J. Am. Chem. Soc. 1997; 119: 9641
    • 6g Kanda Y, Fukuyama T. J. Am. Chem. Soc. 1993; 115: 8451
    • 7a Qin DD, Yu W, Zhou JD, Zhang YC, Ruan YP, Zhou ZH, Chen HB. Chem. Eur. J. 2013; 19: 16541
    • 7b Qin DD, Lai WH, Hu D, Chen Z, Wu AA, Ruan YP, Zhou ZH, Chen HB. Chem. Eur. J. 2012; 18: 10515

      For reviews of kinetic resolution, see:
    • 8a Bartoszewicz A, Ahlsten N, Martín-Matute B. Chem. Eur. J. 2013; 19: 7274
    • 8b Müller CE, Schreiner PR. Angew. Chem. Int. Ed. 2011; 50: 6012
    • 8c Pellissier H. Adv. Synth. Catal. 2011; 353: 1613
    • 8d Lee JH, Han K, Kim MJ, Park J. Eur. J. Org. Chem. 2010; 999
    • 8e Vedejs E, Jure M. Angew. Chem. Int. Ed. 2005; 44: 3974
    • 8f Robinson DE. J. E, Bull SD. Tetrahedron: Asymmetry 2003; 14: 1407
    • 8g Keith JM, Larrow JF, Jacobsen EN. Adv. Synth. Catal. 2001; 343: 5

      For kinetic resolution of secondary propargylic alcohols, see:
    • 9a Lee MH, Choi ET, Kim D, Lee YM, Park YS. Eur. J. Org. Chem. 2008; 5630
    • 9b Birman VB, Guo L. Org. Lett. 2006; 8: 4859
    • 9c Xu D, Li Z, Ma S. Tetrahedron Lett. 2003; 44: 6343
    • 9d Tao B, Ruble JC, Hoic DA, Fu GC. J. Am. Chem. Soc. 1999; 121: 5091
    • 9e Nakamura K, Takenaka K, Ohno A. Tetrahedron: Asymmetry 1998; 9: 4429
    • 9f Allevi P, Ciuffreda P, Anastasia M. Tetrahedron: Asymmetry 1997; 8: 93
  • 10 Typical Procedure for One-Pot Addition and Kinetic Resolution To a solution of 1b (53.4 mg, 0.2 mmol) in THF (3 mL) phenylacetylene (0.33 mL, 3.0 mmol) and ZnMe2 (1 M in toulene, 2 mL, 2.0 mmol) were added. The mixture was stirred at r.t. for 24 h, and methyl phenylglyoxylate (164 mg, 1.0 mmol) in THF (2 mL) was added via syringe. The resulting solution was stirred at r.t. for additional 30 h, quenched with diluted HCl (1 N, 6 mL), and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with PE–EtOAc (20:1, v/v), which afforded (+)-methyl 2-hydroxy-2,4-diphenylbut-3-ynoate as pale yellow oil (104 mg, 0.39 mmol, 39%). [α]D 20 +14.6 (c 1.0, CHCl3). IR (film): 3483 (br), 3061, 2954, 2230, 1739, 1490, 1450, 1255, 1184, 1115, 1099, 1069, 757, 693 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.80–7.75 (m, 2 H), 7.58–7.54 (m, 2 H), 7.47–7.33 (m, 6 H), 4.31 (s, 1 H), 3.85 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 172.4, 139.3, 132.0, 129.0, 128.8, 128.4, 128.3, 126.3, 121.9, 87.0, 86.3, 73.2, 54.3. ESI-HRMS: m/z calcd for C17H14O3 [M + Na]+: 289.0835; found: 289.0831. HPLC [Chiralpak AD-H, hexane–i-PrOH (60:40), 1.0 mL/min, 30 °C, 242 nm]: t r (major) = 5.8 min; t r (minor) = 6.8 min, 94% ee.