Aktuelle Rheumatologie 2013; 38(04): 218-225
DOI: 10.1055/s-0033-1351302
Übersichtsarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Störungen von Hormonsystemen bei Autoimmunerkrankungen – gut oder böse?

Alteration of Hormonal Systems in Autoimmune Disorders – Good or Bad?
G. Pongratz
1   Klinik und Poliklinik für Innere Medizin I, Labor für experimentelle Rheumatologie und Neuroendokrino-Immunologie, Universitätsklinikum Regensburg
,
R. H. Straub
1   Klinik und Poliklinik für Innere Medizin I, Labor für experimentelle Rheumatologie und Neuroendokrino-Immunologie, Universitätsklinikum Regensburg
› Author Affiliations
Further Information

Publication History

Publication Date:
13 August 2013 (online)

Zusammenfassung

Veränderungen des Hormonsystems bei chronisch-entzündlichen Erkrankungen wurden sowohl beim Mensch als auch im Tiermodell beobachtet. Es hat sich jedoch im Laufe der Jahre gezeigt, dass diese Veränderungen nicht separiert betrachtet werden können. Sie sind ein Ausdruck einer generalisierten Neukonfiguration der Körpersysteme (Hormonsystem, Nervensystem und Immunsystem) im Rahmen entzündlicher Prozesse. Diese Übersichtsarbeit versucht den tieferen Sinn dieser Anpassungsreaktion, hier auch genannt „Entzündungskonfiguration“ zu charakterisieren. Diese Anpassungsreaktion dient v. a. einem Zweck, der optimalen Bekämpfung eines infektiösen „Eindringlings“. Dies wird durch 2 Maßnahmen erreicht: 1) Je nach Dauer der Entzündung kommt es zu einer zunehmenden Abkopplung und Verselbständigung der lokalen Entzündung von einer systemischen Regulation, wobei lokale entzündungsfördernde Mechanismen überwiegen. 2) Da das aktivierte Immunsystem erhebliche Mengen an energiereichen Substraten verbraucht, ist die Sicherstellung des Energienachschubs von entscheidender Bedeutung. Dies wird ebenfalls durch die Entzündungskonfiguration der Körpersysteme erreicht. Diese Mechanismen wurden während der Evolution zum Zweck der akuten Abwehr von „Eindringligen“ entwickelt. Allerdings hat der Körper keine Methoden zur Verfügung, diese Vorgänge abzuschalten, solange ein Grund für die Entzündung vorhanden ist (z. B. persistentes Autoantigen, Defekt von immunregulatorischen Mechanismen, immunologischer Toleranzverlust). So kommt es zu weitreichenden negativen Auswirkungen (Katabolie, Kachexie, Bluthochdruck, Wasserretention, diabetogene Stoffwechsellage, usw.). Anhand des Beispiels der veränderten hor­monalen Regulation bei Patienten mit rheumatoider Arthritis (HPA-Achse und Sexualsteroide), sollen diese Konzepte dargestellt werden.

Abstract

Alterations of hormonal systems during chronic inflammatory states have been observed in human disease and animal models of diseases. Emerging concepts over the last decades show that these alterations may not be regarded as separate. They are merely the consequence of a generalised reconfiguration of regulatory body systems during inflammation (hormonal, nervous, and immune). This review tries to characterise the deeper meaning of this adaptation process, which is called “inflammatory configuration”. This adaptational process during inflammation is important for optimisation of the fight against infectious “intruders”. This goal is reached first and foremost by two measures: (i) depending on the duration of inflammation, the local inflammatory process gets more and more independent from systemic regulation so that local proinflammatory mechanisms prevail; (ii) since the activated immune system needs a lot of energy, securing the energy supply is of outstanding importance, which is part of the inflammatory reconfiguration of the body systems. These mechanisms have been developed during evolution for one reason: the acute fight against infectious intruders. Therefore, the organism has no means to end these processes as long as a reason for inflammation remains (e. g. persisting autoantigen, defects in regulatory mechanisms, loss of tolerance). Due to the chronic catabolic state (continuous energy supply to the immune system) and the ongoing propagation of local inflammation (local tissue destruction), several negative consequences arise (catabolism, cachexia, high blood pressure, water retention, diabetogenic metabolic state, etc.). Using hormonal dysregulation as an example (HPA axis and sex hormones), we explain these concepts in detail in this review.

 
  • Literatur

  • 1 Calogero AE, Bernardini R, Gold PW et al. Regulation of rat hypothalamic corticotropin-releasing hormone secretion in vitro: potential clinical implications. Adv Exp Med Biol 1988; 245: 167-181
  • 2 Carr DJ. Neuroendocrine peptide receptors on cells of the immune system. Chem Immunol 1992; 52: 84-105
  • 3 Theoharides TC, Singh LK, Boucher W et al. Corticotropin-releasing hormone induces skin mast cell degranulation and increased vascular permeability, a possible explanation for its proinflammatory effects. Endocrinology 1998; 139: 403-413
  • 4 Crompton R, Clifton VL, Bisits AT et al. Corticotropin-releasing hormone causes vasodilation in human skin via mast cell-dependent pathways. J Clin Endocrinol Metab 2003; 88: 5427-5432
  • 5 Vasiadi M, Therianou A, Sideri K et al. Increased serum CRH levels with decreased skin CRHR-1 gene expression in psoriasis and atopic dermatitis. J Allergy Clin Immunol 2012; 129: 1410-1413
  • 6 Hall JM, Cruser D, Podawiltz A et al. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis. Dermatol Res Pract. 2012 2012. 403908
  • 7 Agelaki S, Tsatsanis C, Gravanis A et al. Corticotropin-releasing hormone augments proinflammatory cytokine production from macrophages in vitro and in lipopolysaccharide-induced endotoxin shock in mice. Infect Immun 2002; 70: 6068-6074
  • 8 Benou C, Wang Y, Imitola J et al. Corticotropin-releasing hormone contributes to the peripheral inflammatory response in experimental autoimmune encephalomyelitis. J Immunol 2005; 174: 5407-5413
  • 9 Gay J, Kokkotou E, O’Brien M et al. Corticotropin-releasing hormone deficiency is associated with reduced local inflammation in a mouse model of experimental colitis. Endocrinology 2008; 149: 3403-3409
  • 10 Webster EL, Barrientos RM, Contoreggi C et al. Corticotropin releasing hormone (CRH) antagonist attenuates adjuvant induced arthritis: role of CRH in peripheral inflammation. J Rheumatol 2002; 29: 1252-1261
  • 11 Gutman AB, Yu TF. Effects of adrenocorticotropic hormone (ACTH) in gout. Am J Med 1950; 9: 24-30
  • 12 Hench PS, Kendall EC. The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone; compound E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis. Proc Staff Meet Mayo Clin 1949; 24: 181-197
  • 13 Berkovich R. Treatment of acute relapses in multiple sclerosis. Neurotherapeutics 2013; 10: 97-105
  • 14 Daoussis D, Antonopoulos I, Yiannopoulos G et al. ACTH as first line treatment for acute gout in 181 hospitalized patients. Joint Bone Spine. 2012
  • 15 Catania A, Gatti S, Colombo G et al. Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol Rev 2004; 56: 1-29
  • 16 Brzoska T, Luger TA, Maaser C et al. Alpha-melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr Rev 2008; 29: 581-602
  • 17 De WD, Jolles J. Neuropeptides derived from pro-opiocortin: behavioral, physiological, and neurochemical effects. Physiol Rev 1982; 62: 976-1059
  • 18 Kishi T, Aschkenasi CJ, Lee CE et al. Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol 2003; 457: 213-235
  • 19 Asadi S, Alysandratos KD, Angelidou A et al. Substance P (SP) induces expression of functional corticotropin-releasing hormone receptor-1 (CRHR-1) in human mast cells. J Invest Dermatol 2012; 132: 324-329
  • 20 Chowdrey HS, Larsen PJ, Harbuz MS et al. Endogenous substance P inhibits the expression of corticotropin-releasing hormone during a chronic inflammatory stress. Life Sci 1995; 57: 2021-2029
  • 21 Blalock JE. Proopiomelanocortin-derived peptides in the immune system. Clin Endocrinol (Oxf) 1985; 22: 823-827
  • 22 Wang W, Zhang X, Yang L et al. Lipopolysaccharide upregulates the expression of corticotropin-releasing hormone via MAP kinase pathway in rat peritoneal macrophages. Mol Cell Biochem 2012; 361: 1-7
  • 23 Kravchenco IV, Furalev VA. Secretion of immunoreactive corticotropin releasing factor and adrenocorticotropic hormone by T- and B-lymphocytes in response to cellular stress factors. Biochem Biophys Res Commun 1994; 204: 828-834
  • 24 Pallinger E, Csaba G. A hormone map of human immune cells showing the presence of adrenocorticotropic hormone, triiodothyronine and endorphin in immunophenotyped white blood cells. Immunology 2008; 123: 584-589
  • 25 Baerwald CG, Mok CC, Tickly M et al. Corticotropin releasing hormone (CRH) promoter polymorphisms in various ethnic groups of patients with rheumatoid arthritis. Z Rheumatol 2000; 59: 29-34
  • 26 Nishioka T, Kurokawa H, Takao T et al. Differential changes of corticotropin releasing hormone (CRH) concentrations in plasma and synovial fluids of patients with rheumatoid arthritis (RA). Endocr J 1996; 43: 241-247
  • 27 Crofford LJ, Sano H, Karalis K et al. Corticotropin-releasing hormone in synovial fluids and tissues of patients with rheumatoid arthritis and osteoarthritis. J Immunol 1993; 151: 1587-1596
  • 28 Masi AT, Chrousos GP, Bornstein SR. Enigmas of adrenal androgen and glucocorticoid dissociation in premenopausal onset rheumatoid arthritis. J Rheumatol 1999; 26: 247-250
  • 29 Capellino S, Cosentino M, Wolff C et al. Catecholamine-producing cells in the synovial tissue during arthritis: modulation of sympathetic neurotransmitters as new therapeutic target. Ann Rheum Dis 2010; 69: 1853-1860
  • 30 Pongratz G, Straub RH. Role of peripheral nerve fibres in acute and chronic inflammation in arthritis. Nat Rev Rheumatol 2013; 9: 117-126
  • 31 Tsigos C, Papanicolaou DA, Defensor R et al. Dose effects of recombinant human interleukin-6 on pituitary hormone secretion and energy expenditure. Neuroendocrinology 1997; 66: 54-62
  • 32 Mastorakos G, Ilias I. Relationship between interleukin-6 (IL-6) and hypothalamic-pituitary-adrenal axis hormones in rheumatoid arthritis. Z Rheumatol. 2000; 59 (Suppl. 02) II/75-II/79
  • 33 Straub RH, Paimela L, Peltomaa R et al. Inadequately low serum levels of steroid hormones in relation to interleukin-6 and tumor necrosis factor in untreated patients with early rheumatoid arthritis and reactive arthritis. Arthritis Rheum 2002; 46: 654-662
  • 34 Zietz B, Reber T, Oertel M et al. Altered function of the hypothalamic stress axes in patients with moderately active systemic lupus erythematosus. II. Dissociation between androstenedione, cortisol, or dehydroepiandrosterone and interleukin 6 or tumor necrosis factor. J Rheumatol 2000; 27: 911-918
  • 35 Buske-Kirschbaum A, Ebrecht M, Hellhammer DH. Blunted HPA axis responsiveness to stress in atopic patients is associated with the acuity and severeness of allergic inflammation. Brain Behav Immun 2010; 24: 1347-1353
  • 36 Straub RH, Pongratz G, Cutolo M et al. Increased cortisol relative to adrenocorticotropic hormone predicts improvement during anti-tumor necrosis factor therapy in rheumatoid arthritis. Arthritis Rheum 2008; 58: 976-984
  • 37 Atzeni F, Sarzi-Puttini P, DePortu S et al. In etanercept-treated psoriatic arthritis patients clinical improvement correlated with an increase of serum cortisol relative to other adrenal hormones. Clin Exp Rheumatol 2008; 26: 103-108
  • 38 Straub RH, Besedovsky HO. Integrated evolutionary, immunological, and neuroendocrine framework for the pathogenesis of chronic disabling inflammatory diseases. FASEB J 2003; 17: 2176-2183
  • 39 Elliott DE, Weinstock JV. Where are we on worms?. Curr Opin Gastroenterol 2012; 28: 551-556
  • 40 Oikarinen J, Hamalainen L, Oikarinen A. Modulation of glucocorticoid receptor activity by cyclic nucleotides and its implications on the regulation of human skin fibroblast growth and protein synthesis. Biochim Biophys Acta 1984; 799: 158-165
  • 41 Gruol DJ, Campbell NF, Bourgeois S. Cyclic AMP-dependent protein kinase promotes glucocorticoid receptor function. J Biol Chem 1986; 261: 4909-4914
  • 42 Nakada MT, Stadel JM, Poksay KS et al. Glucocorticoid regulation of beta-adrenergic receptors in 3T3-L1 preadipocytes. Mol Pharmacol 1987; 31: 377-384
  • 43 Dong Y, Aronsson M, Gustafsson JA et al. The mechanism of cAMP-induced glucocorticoid receptor expression. Correlation to cellular glucocorticoid response. J Biol Chem 1989; 264: 13679-13683
  • 44 DiBattista JA, Martel-Pelletier J, Cloutier JM et al. Modulation of glucocorticoid receptor expression in human articular chondrocytes by cAMP and prostaglandins. J Rheumatol Suppl 1991; 27: 102-105
  • 45 Korn SH, Wouters EF, Wesseling G et al. Interaction between glucocorticoids and beta2-agonists: alpha and beta glucocorticoid-receptor mRNA expression in human bronchial epithelial cells. Biochem Pharmacol 1998; 56: 1561-1569
  • 46 Eickelberg O, Roth M, Lorx R et al. Ligand-independent activation of the glucocorticoid receptor by beta2-adrenergic receptor agonists in primary human lung fibroblasts and vascular smooth muscle cells. J Biol Chem 1999; 274: 1005-1010
  • 47 Schmidt P, Holsboer F, Spengler D. Beta(2)-adrenergic receptors potentiate glucocorticoid receptor transactivation via G protein beta gamma-subunits and the phosphoinositide 3-kinase pathway. Mol Endocrinol 2001; 15: 553-564
  • 48 Renz H, Gong JH, Schmidt A et al. Release of tumor necrosis factor-alpha from macrophages. Enhancement and suppression are dose-dependently regulated by prostaglandin E2 and cyclic nucleotides. J Immunol 1988; 141: 2388-2393
  • 49 Johnson KW, Davis BH, Smith KA. cAMP antagonizes interleukin 2-promoted T-cell cycle progression at a discrete point in early G1. Proc Natl Acad Sci U S A 1988; 85: 6072-6076
  • 50 Case JP, Lafyatis R, Kumkumian GK et al. IL-1 regulation of transin/stromelysin transcription in rheumatoid synovial fibroblasts appears to involve two antagonistic transduction pathways, an inhibitory, prostaglandin-dependent pathway mediated by cAMP, and a stimulatory, protein kinase C-dependent pathway. J Immunol 1990; 145: 3755-3761
  • 51 Snijdewint FG, Kalinski P, Wierenga EA et al. Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. J Immunol 1993; 150: 5321-5329
  • 52 DiBattista JA, Martel-Pelletier J, Fujimoto N et al. Prostaglandins E2 and E1 inhibit cytokine-induced metalloprotease expression in human synovial fibroblasts. Mediation by cyclic-AMP signalling pathway. Lab Invest 1994; 71: 270-278
  • 53 van der Pouw Kraan TC, Boeije LC, Smeenk RJ et al. Prostaglandin-E2 is a potent inhibitor of human interleukin 12 production. J Exp Med 1995; 181: 775-779
  • 54 Verghese MW, McConnell RT, Strickland AB et al. Differential regulation of human monocyte-derived TNF alpha and IL-1 beta by type IV cAMP-phosphodiesterase (cAMP-PDE) inhibitors. J Pharmacol Exp Ther 1995; 272: 1313-1320
  • 55 Straub RH, Gunzler C, Miller LE et al. Anti-inflammatory cooperativity of corticosteroids and norepinephrine in rheumatoid arthritis synovial tissue in vivo and in vitro. FASEB J 2002; 16: 993-1000
  • 56 Straub RH, Herfarth H, Falk W et al. Uncoupling of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis in inflammatory bowel disease?. J Neuroimmunol 2002; 126: 116-125
  • 57 Wiest R, Moleda L, Zietz B et al. Uncoupling of sympathetic nervous system and hypothalamic-pituitary-adrenal axis in cirrhosis. J Gastroenterol Hepatol 2008; 23: 1901-1908
  • 58 Härle P, Straub RH, Wiest R et al. Increase of sympathetic outflow measured by neuropeptide Y and decrease of the hypothalamic-pituitary-adrenal axis tone in patients with systemic lupus erythematosus and rheumatoid arthritis: another example of uncoupling of response systems. Ann Rheum Dis 2006; 65: 51-56
  • 59 Straub RH, Cutolo M, Buttgereit F et al. Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J Intern Med 2010; 267: 543-560
  • 60 Kahlenberg JM, Kaplan MJ. Mechanisms of premature atherosclerosis in rheumatoid arthritis and lupus. Annu Rev Med 2013; 64: 249-263
  • 61 Grimaldi CM. Sex and systemic lupus erythematosus: the role of the sex hormones estrogen and prolactin on the regulation of autoreactive B cells. Curr Opin Rheumatol 2006; 18: 456-461
  • 62 Cutolo M, Seriolo B, Villaggio B et al. Androgens and estrogens modulate the immune and inflammatory responses in rheumatoid arthritis. Ann N Y Acad Sci 2002; 966: 131-142
  • 63 Straub RH. The complex role of estrogens in inflammation. Endocr Rev 2007; 28: 521-574
  • 64 Roubinian JR, Papoian R, Talal N. Androgenic hormones modulate autoantibody responses and improve survival in murine lupus. J Clin Invest 1977; 59: 1066-1070
  • 65 Feher GK, Feher T, Zahumenszky Z. Study on the inactivation mechanism of androgens in rheumatoid arthritis: excretory rate of free and conjugated 17-ketosteroids. Endokrinologie 1979; 73: 167-172
  • 66 Jungers P, Nahoul K, Pelissier C et al. Low plasma androgens in women with active or quiescent systemic lupus erythematosus. Arthritis ­Rheum 1982; 25: 454-457
  • 67 Masi AT, Josipovic DB, Jefferson WE. Low adrenal androgenic-anabolic steroids in women with rheumatoid arthritis (RA): gas-liquid chromatographic studies of RA patients and matched normal control women indicating decreased 11-deoxy-17-ketosteroid excretion. Semin Arthritis Rheum 1984; 14: 1-23
  • 68 Masi AT, Chrousos GP. Hypothalamic-pituitary-adrenal-glucocorticoid axis function in rheumatoid arthritis. J Rheumatol 1996; 23: 577-581
  • 69 Castagnetta LA, Carruba G, Granata OM et al. Increased estrogen formation and estrogen to androgen ratio in the synovial fluid of patients with rheumatoid arthritis. J Rheumatol 2003; 30: 2597-2605
  • 70 Schmidt M, Weidler C, Naumann H et al. Androgen conversion in osteoarthritis and rheumatoid arthritis synoviocytes – androstenedione and testosterone inhibit estrogen formation and favor production of more potent 5alpha-reduced androgens. Arthritis Res Ther 2005; 7: R938-R948
  • 71 Straub RH. Evolutionary medicine and chronic inflammatory state – known and new concepts in pathophysiology. J Mol Med (Berl) 2012; 90: 523-534