Fortschr Neurol Psychiatr 2014; 82(8): 439-446
DOI: 10.1055/s-0034-1366597
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Von der Psychopathophysiologie zur Biomarker-basierten Klassifikation und stratifizierten Therapie schizophrener Störungen

From Psychopathophysiology towards a Biomarker-Based Classification and Stratified Treatment of Schizophrenic Disorders
O. Gruber
Further Information

Publication History

08 January 2014

07 May 2014

Publication Date:
08 August 2014 (online)

Zusammenfassung

Dieser Artikel gibt eine Übersicht über die Rolle der funktionellen Bildgebung des Gehirns für 1. das Verständnis der Symptome der Schizophrenie und der ihnen zugrundeliegenden Pathophysiologie, 2. die Erforschung der pathogenetisch relevanten genetischen und Umweltfaktoren und 3. aktuelle und zukünftige Entwicklungen einer Biomarker-basierten Klassifikation und individualisierten Therapie schizophrener Störungen. Die Bildgebung endophänotypischer Hirnfunktionsstörungen und das Genomic Imaging sind vielversprechende wissenschaftliche Ansätze, die die Entwicklung funktioneller Hirnbildgebungsmarker für klinisch relevante pathophysiologische Prozesse vorantreiben. Solche Bildgebungsbiomarker werden eine präzisere Differenzialdiagnose zwischen pathophysiologisch und pathogenetisch distinkten Subtypen schizophrener Störungen ermöglichen und eine wichtige Rolle für die Vorhersage des individuellen Ansprechens auf spezifische Therapien und somit für eine individualisierte Therapieauswahl spielen.

Abstract

This article gives an overview of the role of functional neuroimaging for 1. a better understanding of the phenotypic symptoms and their underlying pathophysiology, 2. research into the genetic and environmental factors involved in the pathogenesis, and 3. current and future developments towards a biomarker-based classification and tailored therapy of schizophrenic disorders. In particular, neuroimaging of endophenotypic brain dysfunctions and imaging genetics are promising research approaches as endophenotypes may guide the development of functional neuroimaging biomarkers for clinically relevant pathophysiological processes. These biomarkers may permit a more precise differential diagnosis of pathophysiological and pathogenetic subtypes of the heterogeneous diagnostic category of schizophrenic disorders. Furthermore, they may allow us to predict individual treatment responses to specific therapies and to personalise treatment selection.

 
  • Literatur

  • 1 Gruber O, Gruber E, Falkai P. Neural correlates of working memory deficits in schizophrenic patients. Ways to establish neurocognitive endophenotypes of psychiatric disorders. Radiologe 2005; 45: 153-160
  • 2 Insel TR, Cuthbert BN. Endophenotypes: bridging genomic complexity and disorder heterogeneity. Biol Psychiatry 2009; 66: 988-989
  • 3 Gruber O, Falkai P. Von der Identifizierung neurofunktioneller Systeme zur Individualisierung der Therapie schizophrener Störungen. Nervenarzt 2009; 80: 12-18
  • 4 Gruber O. Neuroimaging markers: their role for differential diagnosis and therapeutic decisions in personalized psychiatry. Nervenarzt 2011; 82: 1404 , 1406, 1408, passim
  • 5 Suzuki M, Yuasa S, Minabe Y et al. Left superior temporal blood flow increases in schizophrenic and schizophreniform patients with auditory hallucination: a longitudinal case study using 123I-IMP SPECT. Eur Arch Psychiatry Clin Neurosci 1993; 242: 257-261
  • 6 Dierks T, Linden DE, Jandl M et al. Activation of Heschl’s gyrus during auditory hallucinations. Neuron 1999; 22: 615-621
  • 7 Lennox BR, Park SBG, Medley I et al. The functional anatomy of auditory hallucinations in schizophrenia. Psychiatry Res 2000; 100: 13-20
  • 8 Jardri R, Pouchet A, Pins D et al. Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis. Am J Psychiatry 2011; 168: 73-81
  • 9 Kühn S, Gallinat J. Quantitative meta-analysis on state and trait aspects of auditory verbal hallucinations in schizophrenia. Schizophr Bull 2012; 38: 779-786
  • 10 Goghari VM, Sponheim SR, MacDonald 3rd AW. The functional neuroanatomy of symptom dimensions in schizophrenia: a qualitative and quantitative review of a persistent question. Neurosci Biobehav Rev 2010; 34: 468-486
  • 11 Hubl D, Koenig T, Strik W et al. Pathways that make voices: white matter changes in auditory hallucinations. Arch Gen Psychiatry 2004; 61: 658-668
  • 12 Andreasen NC, Olsen S. Negative vs positive schizophrenia. Definition and validation. Arch Gen Psychiatry 1982; 39: 789-794
  • 13 Sigmundsson T, Suckling J, Maier M et al. Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am J Psychiatry 2001; 158: 234-243
  • 14 Roth RM, Flashman LA, Saykin AJ et al. Apathy in schizophrenia: reduced frontal lobe volume and neuropsychological deficits. Am J Psychiatry 2004; 161: 157-159
  • 15 Turetsky B, Cowell PE, Gur RC et al. Frontal and temporal lobe brain volumes in schizophrenia. Relationship to symptoms and clinical subtype. Arch Gen Psychiatry 1995; 52: 1061-1070
  • 16 Abi-Dargham A, Xu X, Thompson JL et al. Increased prefrontal cortical D1 receptors in drug naïve patients with schizophrenia: a PET study with [11C]NNC112. J Psychopharmacol 2012; 26: 794-805
  • 17 Ventura J, Hellemann GS, Thames AD et al. Symptoms as mediators of the relationship between neurocognition and functional outcome in schizophrenia: A meta-analysis. Schizophr Res 2009; 113: 189-199
  • 18 Dominguez MdeG, Viechtbauer W, Simons CJP et al. Are psychotic psychopathology and neurocognition orthogonal? A systematic review of their associations. Psychol Bull 2009; 135: 157-171
  • 19 Lindsberg J, Poutiainen E, Kalska H. Clarifying the diversity of first-episode psychosis: Neuropsychological correlates of clinical symptoms. Nord J Psychiatry 2009; 63: 493-500
  • 20 Nieuwenstein MR, Aleman A, de Haan EH. Relationship between symptom dimensions and neurocognitive functioning in schizophrenia: a meta-analysis of WCST and CPT studies. Wisconsin Card Sorting Test. Continuous Performance Test. J Psychiatr Res 2001; 35: 119-125
  • 21 Gruber O. Neurokognition und Affektregulierung bei schizophrenen Psychosen: Neuropsychologie, Bildgebung, Testdiagnostik und Behandlung. In: Sachs G, Volz HP, Hrsg. Neurokognition und Affektregulierung bei schizophrenen Psychosen: Neuropsychologie, Bildgebung, Testdiagnostik und Behandlung. Stuttgart: Schattauer; 2013: 59-88
  • 22 Callicott JH, Bertolino A, Mattay VS et al. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 2000; 10: 1078-1092
  • 23 Manoach DS, Gollub RL, Benson ES et al. Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biological Psychiatry 2000; 48: 99-109
  • 24 Henseler I, Falkai P, Gruber O. A systematic fMRI investigation of the brain systems subserving different working memory components in schizophrenia. Eur J Neurosci 2009; 30: 693-702
  • 25 Weinberger DR, Berman KF, Suddath R et al. Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry 1992; 149: 890-897
  • 26 Perlstein WM, Dixit NK, Carter CS et al. Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biol Psychiatry 2003; 53: 25-38
  • 27 Tan HY, Sust S, Buckholtz JW et al. Dysfunctional prefrontal regional specialization and compensation in schizophrenia. Am J Psychiatry 2006; 163: 1969-1977
  • 28 Meyer-Lindenberg AS, Olsen RK, Kohn PD et al. Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry 2005; 62: 379-386
  • 29 Henseler I, Falkai P, Gruber O. Disturbed functional connectivity within brain networks subserving domain-specific subcomponents of working memory in schizophrenia: relation to performance and clinical symptoms. J Psychiatr Res 2010; 44: 364-372
  • 30 Smith EE, Jonides J. Storage and Executive Processes in the Frontal Lobes. Science 1999; 283: 1657-1661
  • 31 Gruber O, Goschke T. Executive control emerging from dynamic interactions between brain systems mediating language, working memory and attentional processes. Acta Psychol (Amst) 2004; 115: 105-121
  • 32 Gruber O, Melcher T, Diekhof EK et al. Brain mechanisms associated with background monitoring of the environment for potentially significant sensory events. Brain Cogn 2009; 69: 559-564
  • 33 Gruber O, Diekhof EK, Kirchenbauer L et al. A neural system for evaluating the behavioural relevance of salient events outside the current focus of attention. Brain Res 2010; 1351: 212-221
  • 34 Minzenberg MJ, Laird AR, Thelen S et al. Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry 2009; 66: 811-822
  • 35 Krabbendam L, O’Daly O, Morley LA et al. Using the Stroop task to investigate the neural correlates of symptom change in schizophrenia. Br J Psychiatry 2009; 194: 373-374
  • 36 Murray GK, Corlett PR, Clark L et al. Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Molecular Psychiatry 2008; 13: 267-276
  • 37 Achim AM, Lepage M. Episodic memory-related activation in schizophrenia: meta-analysis. Br J Psychiatry 2005; 187: 500-509
  • 38 Lesh TA, Niendam TA, Minzenberg MJ et al. Cognitive Control Deficits in Schizophrenia: Mechanisms and Meaning. Neuropsychopharmacology 2011; 36: 316-338
  • 39 Li H, Chan RCK, McAlonan GM et al. Facial emotion processing in schizophrenia: a meta-analysis of functional neuroimaging data. Schizophr Bull 2010; 36: 1029-1039
  • 40 Brunet-Gouet E, Decety J. Social brain dysfunctions in schizophrenia: a review of neuroimaging studies. Psychiatry Res 2006; 148: 75-92
  • 41 Rasetti R, Mattay VS, Wiedholz LM et al. Evidence that altered amygdala activity in schizophrenia is related to clinical state and not genetic risk. Am J Psychiatry 2009; 166: 216-225
  • 42 Munafò MR, Thiselton DL, Clark TG et al. Association of the NRG1 gene and schizophrenia: a meta-analysis. Mol Psychiatry 2006; 11: 539-546
  • 43 Allen NC, Bagade S, McQueen MB et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 2008; 40: 827-834
  • 44 Straub RE, Weinberger DR. Schizophrenia genes – Famine to feast. Biological Psychiatry 2006; 60: 81-83
  • 45 Van Os J, Kenis G, Rutten BPF. The environment and schizophrenia. Nature 2010; 468: 203-212
  • 46 Egan MF, Goldberg TE, Kolachana BS et al. Effect of COMT Val(108/158) Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001; 98: 6917-6922
  • 47 Meyer-Lindenberg A, Kohn PD, Kolachana B et al. Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat Neurosci 2005; 8: 594-596
  • 48 Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 2006; 7: 818-827
  • 49 Meyer-Lindenberg A, Nichols T, Callicott JH et al. Impact of complex genetic variation in COMT on human brain function. Molecular Psychiatry 2006; 11: 867-877
  • 50 Tan HY, Chen Q, Sust S et al. Epistasis between catechol-O-methyltransferase and type II metabotropic glutamate receptor 3 genes on working memory brain function. Proc Natl Acad Sci U S A 2007; 104: 12536-12541
  • 51 Nixon DC, Prust MJ, Sambataro F et al. Interactive Effects of DAOA (G72) and Catechol-O-Methyltransferase on Neurophysiology in Prefrontal Cortex. Biological Psychiatry 2011; 69: 1006-1008
  • 52 Nicodemus KK, Kolachana BS, Vakkalanka R et al. Evidence for statistical epistasis between catechol-O-methyltransferase (COMT) and polymorphisms in RGS4, G72 (DAOA), GRM3, and DISC1: influence on risk of schizophrenia. Human Genetics 2007; 120: 889-906
  • 53 Hall J, Whalley HC, Job DE et al. A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nature Neuroscience 2006; 9: 1477-1478
  • 54 Gruber O, Falkai P, Schneider-Axmann T et al. Neuregulin-1 haplotype HAP(ICE) is associated with lower hippocampal volumes in schizophrenic patients and in non-affected family members. J Psychiatr Res 2008; 43: 1-6
  • 55 Callicott JH, Straub RE, Pezawas L et al. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA 2005; 102: 8627-8632
  • 56 Trost S, Platz B, Usher J et al. DISC1 (disrupted-in-schizophrenia 1) is associated with cortical grey matter volumes in the human brain: A voxel-based morphometry (VBM) study. Journal of Psychiatric Research 2013; 47: 188-196
  • 57 Prata DP, Mechelli A, Fu CHY et al. Effect of disrupted-in-schizophrenia-1 on pre-frontal cortical function. Mol Psychiatry 2008; 13: 915-917 , 909
  • 58 Di Giorgio A, Blasi G, Sambataro F et al. Association of the Ser(704)Cys DISC1 polymorphism with human hippocampal formation gray matter and function during memory encoding. European Journal of Neuroscience 2008; 28: 2129-2136
  • 59 Trost S, Platz B, Usher J et al. The DTNBP1 (dysbindin-1) gene variant rs2619522 is associated with variation of hippocampal and prefrontal grey matter volumes in humans. Eur Arch Psychiatry Clin Neurosci 2013; 263: 53-63
  • 60 O’Donovan MC, Craddock N, Norton N et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics 2008; 40: 1053-1055
  • 61 Ferreira MAR, O’Donovan MC, Meng YA et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40: 1056-1058
  • 62 Esslinger C, Walter H, Kirsch P et al. Neural mechanisms of a genome-wide supported psychosis variant. Science 2009; 324: 605-605
  • 63 Paulus FM, Krach S, Bedenbender J et al. Partial support for ZNF804A genotype-dependent alterations in prefrontal connectivity. Hum Brain Mapp 2013; 34: 304-313
  • 64 Rasetti R, Sambataro F, Chen Q et al. Altered cortical network dynamics: a potential intermediate phenotype for schizophrenia and association with ZNF804A. Arch Gen Psychiatry 2011; 68: 1207-1217
  • 65 Erk S, Meyer-Lindenberg A, Schnell K et al. Brain function in carriers of a genome-wide supported bipolar disorder variant. Arch Gen Psychiatry 2010; 67: 803-811
  • 66 Wolf C, Mohr H, Schneider-Axmann T et al. CACNA1C genotype explains interindividual differences in amygdala volume among patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2013; 1-10
  • 67 Bigos KL, Mattay VS, Callicott JH et al. Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch Gen Psychiatry 2010; 67: 939-945
  • 68 Wessa M, Linke J, Witt SH et al. The CACNA1C risk variant for bipolar disorder influences limbic activity. Mol Psychiatr 2010; 15: 1126-1127
  • 69 Lederbogen F, Kirsch P, Haddad L et al. City living and urban upbringing affect neural social stress processing in humans. Nature 2011; 474: 498-501
  • 70 Zink CF, Tong Y, Chen Q et al. Know your place: Neural processing of social hierarchy in humans. Neuron 2008; 58: 273-283
  • 71 Callicott JH, Egan MF, Mattay VS et al. Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. Am J Psychiatry 2003; 160: 709-719
  • 72 Thermenos HW, Seidman LJ, Breiter H et al. Functional magnetic resonance imaging during auditory verbal working memory in nonpsychotic relatives of persons with schizophrenia: a pilot study. Biol Psychiatry 2004; 55: 490-500
  • 73 Brahmbhatt SB, Haut K, Csernansky JG et al. Neural correlates of verbal and nonverbal working memory deficits in individuals with schizophrenia and their high-risk siblings. Schizophr Res 2006; 87: 191-204
  • 74 Karlsgodt KH, Glahn DC, van Erp TGM et al. The relationship between performance and fMRI signal during working memory in patients with schizophrenia, unaffected co-twins, and control subjects. Schizophr Res 2007; 89: 191-197
  • 75 De Leeuw M, Kahn RS, Zandbelt BB et al. Working memory and default mode network abnormalities in unaffected siblings of schizophrenia patients. Schizophr Res 2013; 150: 555-562
  • 76 Whalley HC, Simonotto E, Flett S et al. fMRI correlates of state and trait effects in subjects at genetically enhanced risk of schizophrenia. Brain 2004; 127: 478-490
  • 77 Rasetti R, Mattay VS, White MG et al. Altered Hippocampal-Parahippocampal Function During Stimulus Encoding: A Potential Indicator of Genetic Liability for Schizophrenia. JAMA Psychiatry 2014;
  • 78 MacDonald 3rd AW, Becker TM, Carter CS. Functional magnetic resonance imaging study of cognitive control in the healthy relatives of schizophrenia patients. Biol Psychiatry 2006; 60: 1241-1249
  • 79 Khadka S, Meda SA, Stevens MC et al. Is aberrant functional connectivity a psychosis endophenotype? A resting state functional magnetic resonance imaging study. Biol Psychiatry 2013; 74: 458-466
  • 80 Kraepelin E. Psychiatrie – Ein Lehrbuch für Studierende und Ärzte. 5. Aufl. Leipzig: Barth; 1896
  • 81 O’Donnell P, Grace AA. Dysfunctions in multiple interrelated systems as the neurobiological bases of schizophrenic symptom clusters. Schizophrenia Bulletin 1998; 24: 267-283
  • 82 Tost H, Meyer-Lindenberg A. Dopamine-Glutamate Interactions: A Neural Convergence Mechanism of Common Schizophrenia Risk Variants. Biological Psychiatry 2011; 69: 912-913
  • 83 Howes OD, Kapur S. The Dopamine Hypothesis of Schizophrenia: Version III--The Final Common Pathway. Schizophr Bull 2009; 35: 549-562
  • 84 Schwartz TL, Sachdeva S, Stahl SM. Glutamate Neurocircuitry: Theoretical Underpinnings in Schizophrenia. Front Pharmacol 2012; 3: 195
  • 85 Blaha CD, Yang CR, Floresco SB et al. Stimulation of the ventral subiculum of the hippocampus evokes glutamate receptor-mediated changes in dopamine efflux in the rat nucleus accumbens. Eur J Neurosci 1997; 9: 902-911
  • 86 Legault M, Wise RA. Injections of N-methyl-D-aspartate into the ventral hippocampus increase extracellular dopamine in the ventral tegmental area and nucleus accumbens. Synapse 1999; 31: 241-249
  • 87 Lodge DJ, Grace AA. Gestational methylazoxymethanol acetate administration alters proteomic and metabolomic markers of hippocampal glutamatergic transmission. Neuropsychopharmacology 2012; 37: 319-320
  • 88 Lodge DJ, Grace AA. Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia. J Neurosci 2007; 27: 11424-11430