Synlett 2014; 25(15): 2121-2126
DOI: 10.1055/s-0034-1378536
letter
© Georg Thieme Verlag Stuttgart · New York

Molecular Iodine Assisted Electrocyclisation: Synthesis of Arcyriaflavin A and Formal Synthesis of Staurosporinone

Prachi Torney
Department of Chemistry, Goa University, Goa 403206, India   Fax: +91(832)6519317   Email: stilve@unigoa.ac.in
,
Rajendra Shirsat
Department of Chemistry, Goa University, Goa 403206, India   Fax: +91(832)6519317   Email: stilve@unigoa.ac.in
,
Santosh Tilve*
Department of Chemistry, Goa University, Goa 403206, India   Fax: +91(832)6519317   Email: stilve@unigoa.ac.in
› Author Affiliations
Further Information

Publication History

Received: 08 April 2014

Accepted after revision: 20 June 2014

Publication Date:
06 August 2014 (online)


Abstract

A new method for the synthesis of the indolocarbazole alkaloid arcyriaflavin A is described. The synthetic strategy employs a graphite-catalysed alkenation, one-pot oxidation–Wittig reaction, iodine-catalysed electrocyclisation and nitrene insertion as the key steps. The strategy also constitutes a formal synthesis of another indolocarbazole alkaloid staurosporinone.

Supporting Information

 
  • References and Notes


    • For reviews on isolation of ICZ, see:
    • 1a Sánchez C, Méndez C, Salas JA. J. Nat. Prod. Rep. 2006; 23: 1007
    • 1b Steglich W. Pure Appl. Chem. 1989; 61: 281
    • 1c Gill M, Steglich W In Progress in the Chemistry of Organic Natural Products. Vol. 51. Herz W, Grisebach H, Kirby GW. Springer; Wien: 1987: 1

      For biological activities of ICZ, see:
    • 2a Rashid MA, Gustafson KR, Kashman Y, Cardellina JH. II, McMahon JB, Boyd MR. Nat. Prod. Lett. 1995; 6: 153
    • 2b Kojiri K, Kondo H, Yoshinari T, Arakawa H, Nakajima S, Satoh F, Kawamura K, Okura A, Suda H, Okanishi M. J. Antibiot. 1991; 44: 723
    • 2c Takahashi I, Saitoh Y, Yoshida M, Sano H, Nakano H, Morimoto M, Tamaoki T. J. Antibiot. 1989; 42: 571

      For biological activities of 1 and 2, see:
    • 3a Takahashi K, Adachi K, Kunimoto S, Wakita H, Takeda K, Watanabe A. Biochem. Biophys. Res. Commun. 2010; 40: 54
    • 3b Murakami Y, Noguchi K, Yamagoe S, Suzuki T, Wakita T, Fukazawa H. Antiviral Res. 2009; 83: 112
    • 3c Liu R, Zhu T, Li D, Gu J, Xia W, Fang Y, Liu H, Zhu W, Gu Q. Arch. Pharm. Res. 2007; 30: 270
    • 3d Robey RW, Shukla S, Steadman K, Obrzut T, Finley EM, Ambudkar SV, Bates SE. Mol. Cancer Ther. 2007; 6: 1877
  • 4 For isolation of 1, see: Steglich W, Steffan B, Kopanski L, Eckhardt G. Angew. Chem., Int. Ed. Engl. 1980; 19: 459

    • For isolation of 2, see:
    • 5a Yasuzama T, Iida T, Yoshida M, Hirayama N, Takahashi M, Shirahata K, Sano H. J. Antibiot. 1986; 39: 1072
    • 5b Nakanishi S, Matsuda Y, Iwahashi K, Kase H. J. Antibiot. 1986; 39: 1066
  • 6 For isolation from marine sources, see: Horton PA, Longley RE, McConnell OJ, Ballas LM. Cell. Mol. Life Sci. 1994; 50: 843

    • For reviews, see:
    • 7a Knölker H.-J, Reddy KR. Chem. Rev. 2012; 112: 3193
    • 7b Knölker H.-J, Reddy KR. Chem. Rev. 2002; 102: 4303
    • 7c Pindur U, Kim Y.-S, Mehrabani F. Curr. Med. Chem. 1999; 6: 29
    • 7d Prudhomme M. Curr. Pharm. Des. 1997; 3: 265
    • 7e Omura S, Sasaki Y, Iwai Y, Takeshita H. J. Antibiot. 1995; 48: 535
    • 7f Moody CJ. Synlett 1994; 681
    • 7g Chakraborty DP In The Alkaloids. Vol. 44. Cordell GA. Academic Press; New York: 1993: 257
    • 7h Gribble GW, Berthel SJ In Studies in Natural Products Chemistry. Vol. 12. Atta-ur-Rahman, Ed. Elsevier; New York: 1993: 365
    • 7i Bergman J In Stereoselective Synthesis (Part A), Studies in Natural Product Chemistry. Vol. 1. Atta-ur-Rahman, Ed. Elsevier; Amsterdam: 1988: 3

      For the synthesis of 1 and 2 from bisindoles and bisindolylmaleimides, see:
    • 8a Kuethe JT, Davies IW. Tetrahedron Lett. 2004; 45: 4009
    • 8b Zhu G, Conner SE, Zhou X, Shih C, Li T, Anderson BD, Brooks HB, Campbell RM, Considine E, Dempsey JA, Faul MM, Ogg C, Patel B, Schultz RM, Spencer CD, Teicher B, Walkins SA. J. Med. Chem. 2003; 46: 2027
    • 8c Bergman J, Kock E, Pelcman B. J. Chem. Soc., Perkin Trans. 1 2000; 2609
    • 8d Gaudencio SP, Santos MM. M, Lobo AM, Prabhakar S. Tetrahedron Lett. 2003; 44: 2577
    • 8e Mahboobi S, Eibler E, Koller M, Kumar KC. S, Popp A. J. Org. Chem. 1999; 64: 4697
    • 8f Wood JL, Stoltz BM, Dietrich H.-J. J. Am. Chem. Soc. 1995; 117: 10413
    • 8g Xie G, Lown JW. Tetrahedron Lett. 1994; 35: 5555
    • 8h Bergman J, Pelcman B. Tetrahedron Lett. 1987; 28: 4441

      For synthesis using a Diels–Alder reaction, see:
    • 9a Nomak R, Snyder JK. Tetrahedron Lett. 2001; 42: 7929
    • 9b Marques MM. B, Lobo AM, Prabhakar S, Branco PS. Tetrahedron Lett. 1999; 40: 3795
    • 9c Moody CJ, Rahimtoola KF. J. Chem. Soc., Chem. Commun. 1990; 1667

      For synthesis using a Diels–Alder reaction and Fischer indolisation, see:
    • 10a Alonso D, Caballero E, Medarde M, Tome F. Tetrahedron Lett. 2005; 46: 4839
    • 10b Gribble GW, Berthel SJ. Tetrahedron 1992; 48: 8869
    • 10c Bergman J, Pelcman B. J. Org. Chem. 1989; 54: 824

      For synthesis using a 6π-electrocyclisation, see:
    • 11a Santos MM. M, Lobo AM, Prabhakar S, Marques MM. B. Tetrahedron Lett. 2004; 45: 2347
    • 11b Pindur U, Kim Y.-S. J. Heterocycl. Chem. 1998; 35: 97
    • 11c Pindur U, Kim Y.-S. J. Heterocycl. Chem. 1995; 32: 1335
  • 12 Wada Y, Nagasaki H, Tokuda M, Orito K. J. Org. Chem. 2007; 72: 2008
  • 13 Rajeshwaran GG, Mohanakrishnan AK. Org. Lett. 2011; 13: 1418
  • 15 Taylor RJ. K, Reid M, Foot J, Raw SA. Acc. Chem. Res. 2005; 38: 851

    • For recent reports on the reactions of 2-vinylindoles, see:
    • 16a Ouyang B, Yu T, Luoa R, Lu G. Org. Biomol. Chem. 2014; 12: 4172
    • 16b Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390
    • 16c Pirovano V, Decataldo L, Rossi E, Vicente R. Chem. Commun. 2013; 49: 3594
    • 16d Pirovano V, Dell’Acqua M, Facoetti D, Nava D, Rizzato S, Abbiati G, Rossi E. Eur. J. Org. Chem. 2013; 6267
    • 16e Lu L.-Q, Chen J.-R, Xiao W.-J. Acc. Chem. Res. 2012; 45: 1278
    • 16f Shiri M. Chem. Rev. 2012; 112: 3508
    • 16g Tan F, Li F, Zhang X.-X, Wang X.-F, Cheng H.-G, Chen J.-R, Xiao W.-J. Tetrahedron 2011; 67: 446
    • 16h Arslan T, Sadak AE, Saracoglu N. Tetrahedron 2010; 66: 2936
    • 16i Cüavdar H, Saracüoglu N. J. Org. Chem. 2006; 71: 7793
    • 17a Parvatkar PT, Parameswaran PS, Tilve SG. Chem. Eur. J. 2012; 18: 5460
    • 17b Jereb M, Vrazic D, Zupan M. Tetrahedron 2011; 67: 1355
    • 18a Aloui F, Moussa S, Hassine BB. Tetrahedron Lett. 2011; 52: 572
    • 18b Lemster T, Pindur U, Lenglet G, Depauw S, Dassi C, David-Cordonnier M.-H. Eur. J. Med. Chem. 2009; 44: 3235
    • 18c Bae S, Mah H, Chaturvedi S, Jeknic TM, Baird WM, Katz AK, Carrell HL, Glusker JP, Okazaki T, Laali KK, Zajc B, Lakshman MK. J. Org. Chem. 2007; 72: 7625
    • 18d Sharma AK, Lin J.-M, Desai D, Amin S. J. Org. Chem. 2005; 70: 4962
    • 18e Wachsmann C, Weber E, Czugler M, Seichter W. Eur. J. Org. Chem. 2003; 2863
    • 18f Mirsadeghi S, Prasad GK. B, Whittaker N, Thakker DR. J. Org. Chem. 1989; 54: 3091
  • 19 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA. Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM. W, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, Revision C.02. Gaussian, Inc; Wallingford CT: 2004
  • 20 Synthesis of 3-Vinyl Indole-2-methanols 8a,b: To a magnetically stirred suspension of indole-2-methanol (2.0 g, 13.6 mmol) and graphite (0.2 g, 16.7 mmol) in a 1:1 mixture of EtOH and H2O (20 mL) was added dimethyl acetylenedicarboxylate (2.8 g, 20.4 mmol) dropwise and the mixture was stirred at r.t. for 48 h. The mixture was then filtered, washed with EtOH (5 mL), the filtrate concentrated and the residue extracted with CHCl3 (3 × 10 mL). The combined organic extracts were dried over Na2SO4, filtered and concentrated under reduced pressure to give a mixture of crude alcohols 8a,b (3.5 g, 90%). These were separated using column chromatography (CHCl3–MeOH, 95:5). The E/Z ratio after isolation was found to be 88:12. Z-Isomer 8a: yellow solid; mp 169–170 °C. IR (KBr): 3523–3381 (br), 1712 cm–1. 1H NMR (400 MHz, DMSO): δ = 3.70 (s, 3 H, OMe), 3.84 (s, 3 H, OMe), 4.67 (d, J = 5.2 Hz, 2 H, CH2), 5.74 (t, J = 5.2 Hz, 1 H, OH), 6.15 (s, 1 H, HC=C), 7.10 (t, J = 5.2 Hz, 1 H, ArH), 7.16 (t, J = 7.2 Hz, 1 H, ArH), 7.46 (d, J = 8.4 Hz, 2 H, ArH), 11.30 (s, 1 H, NH). 13C NMR (100 MHz, DMSO): δ = 51.9 (Me), 52.7 (Me), 56.2 (CH2), 105.7 (Cq), 112.6 (CH), 113.4 (CH), 118.9 (CH), 121.2 (CH), 122.5 (CH), 126.2 (CH), 135.7 (Cq), 142.9 (Cq), 143.9 (Cq), 166.0 (CO), 169.1 (CO). HRMS (ESI): m/z [M + Na]+ calcd for C15H15NO5Na: 312.0848; found: 312.0850. E-Isomer 8b: bright yellow oily liquid. IR (KBr): 3523–3381 (br), 1710 cm–1. 1H NMR (400 MHz, DMSO): δ = 3.54 (s, 3 H, OMe), 3.72 (s, 3 H, OMe), 4.44 (d, J = 5.2 Hz, 2 H, OCH2), 5.40 (t, J = 5.2 Hz, 1 H, OH), 6.83 (s, 1 H, HC=C), 6.97 (t, J = 7.6 Hz, 1 H, ArH), 7.08 (m, 2 H, ArH), 7.37 (d, J = 8.0 Hz, 1 H, ArH), 11.41 (s, 1 H, NH). 13C NMR (100 MHz, DMSO): δ = 52.1 (Me), 53.1 (Me), 56.4 (Me), 105.0 (Cq), 111.9 (CH), 118.8 (CH), 119.8 (CH), 121.5 (CH), 126.1 (CH), 127.5 (Cq), 135.6 (Cq), 136.3 (Cq), 140.4 (Cq), 165.7 (CO), 167.8 (CO). HRMS (ESI): m/z [M + Na]+ calcd for C15H15NO5Na: 312.0848; found: 312.0850. Synthesis of 2,3-Divinylindole 7: A mixture of 8a,b (1.0 g, 3.44 mmol) and o-nitrobenzyltriphenylphosphonium bromide (4.94 g, 10.3 mmol) in CHCl3 (20 mL) containing freshly prepared MnO2 (1.5 g, 17.2 mmol) was stirred at r.t. for 12 h. After complete conversion of the alcohol to aldehyde (monitored by TLC) Et3N (1.45 mL, 10.3 mmol) was added and the reaction was continued for a further 12 h. The mixture was then filtered and concentrated. The crude residue was purified using flash chromatography, eluting with EtOAc and hexanes (30:70) and isolated as an orange syrup (mixture of four isomers as seen from the 1H NMR spectrum) in 75% yield (1.08 g). IR (KBr): 3350, 1720, 1710, 1519, 1340 cm–1. 1H NMR (400 MHz, CDCl3): δ = 3.51–4.12 (s, 6 H, 2 × OMe), 6.45–8.09 {m, [6.45 (d, J = 12.0 Hz), 6.74 (d, J = 7.6 Hz), 6.81 (d, J = 16.4 Hz), 8.10 (d, J = 1.2 Hz), 8.09 (d, J = 3.2 Hz)], 11 H, 2 × HC=C, ArH}, 8.92 (s, 1 H, NH). 13C NMR (100 MHz, CDCl3): δ = 50.9, 51.0 (OMe), 51.9, 52.0 (OMe), 109.9, 110.2 (CH), 110.5 (Cq), 114.2 (CH), 118.4. 118.5 (CH), 119.5 (2 × CH), 119.6 (CH), 120.7 (CH), 121.0 (CH), 122.4 (CH), 122.9 (CH), 123.8 (CH), 124.0 (CH), 125.4 (CH), 126.4 (CH), 126.6 (Cq), 126.9 (CH), 127.8 (CH), 128.5 (CH), 128.6 (CH), 129.2 (CH), 131.0 (CH), 131.1 (Cq), 131.6 (Cq), 131.7 (Cq), 132.0 (CH), 132.6 (CH), 132.8 (Cq), 134.7 (Cq), 135.6 (Cq), 135.9 (Cq), 136.1 (Cq), 146.6 (Cq), 164.4, 164.8 (CO), 166.0, 166.3 (CO). HRMS (ESI): m/z [M + Na]+ calcd for C22H18N2O6Na: 429.1063; found: 429.1065. Synthesis of 2-Nitrophenyl Carbazole 6: To a solution of 2,3-divinyl indole 7 (0.2 g, 0.5 mmol) in nitromethane (30 mL) was added I2 (30 mol%) and the mixture was heated at 95 °C for 24 h. The reaction was cooled to r.t. and to this was added sodium thiosulfate (0.5 g) and stirring was continued for 2 h. The mixture was filtered with suction and the filtrate was concentrated under reduced pressure to give the crude product which, on purification using flash chromatography (hexanes–EtOAc, 60:40), gave a yellow crystalline solid in 68% yield (0.135 g); mp 212–213 °C. IR (KBr): 3285, 1724, 1701, 1522, 1350 cm–1. 1H NMR (400 MHz, DMSO): δ = 3.50 (s, 3 H, OMe), 4.01 (s, 3 H, OMe), 7.25 (t, J = 7.2 Hz, 1 H, ArH), 7.49 (m, 3 H, ArH), 7.63 (d, J = 8.0 Hz, 1 H, ArH), 7.69 (t, J = 7.8 Hz, 1 H, ArH), 7.80 (t, J = 7.6 Hz, 1 H, ArH), 7.94 (d, J = 8.0 Hz, 1 H, ArH), 8.15 (d, 1 H, ArH), 12.00 (s, 1 H, NH). 13C NMR (100 MHz, DMSO): δ = 52.1 (OMe), 52.8 (OMe), 111.8 (CH), 113.4 (CH), 118.1 (Cq), 118.9 (Cq), 120.0 (CH, Cq), 121.6 (CH), 123.9 (CH), 127.3 (CH), 127.7 (Cq), 129.0 (CH), 132.0 (CH), 133.1 (CH), 135.5 (Cq), 135.7 (Cq), 140.7 (Cq), 141.0 (Cq), 148.1 (Cq), 166.6 (CO), 168.3 (CO). HRMS (ESI): m/z [M + Na]+ calcd for C22H16N2O6Na: 427.0906; found: 427.0907. Synthesis of Indolocarbazole Diester 5: 2-Nitrophenyl carbazole 6 (0.15 g, 0.37 mmol) was refluxed in Ph2O (5 mL) along with Ph3P (0.24 g, 0.93 mmol) for 1.5 h. The mixture was then subjected to column chromatography during which Ph2O was eluted using hexanes. Further elution using EtOAc and hexanes (55:45) furnished pale yellow crystals of indolocarbazole diester in 55% yield (0.076g); mp >300 °C. IR (KBr): 3491, 1686 cm–1. 1H NMR (400 MHz, DMSO): δ = 4.01 (s, 6 H, OMe), 7.25 (t, J = 7.6 Hz, 2 H, ArH), 7.49 (t, J = 7.6 Hz, 2 H, ArH), 7.78 (d, J = 8.0 Hz, 2 H, ArH), 8.10 (d, J = 8.0 Hz, 2 H, ArH), 11.64 (s, 2 H, NH). 13C NMR (100 MHz, DMSO): δ = 52.5 (2 × OMe), 112.0 (2 × CH), 115.9 (2 × Cq), 118.2 (2 × Cq), 119.7 (2 × CH), 121.7 (2 × Cq), 121.7 (2 × CH), 125.8 (2 × CH), 26.7 (2 × Cq), 139.8 (2 × Cq), 168.6 (2 × CO). HRMS (ESI): m/z [M + Na]+ calcd for C22H16N2O4Na: 395.1008; found: 395.1003. Synthesis of Anhydride 4: Indolocarbazole diester 5 (0.1 g, 0.27 mmol) was refluxed with KOH (0.1 g, 1.7 mmol) in MeOH for 12 h. The MeOH was then distilled off and the residue was dissolved in EtOAc. The solution was then extracted in H2O (4 × 10 mL) and the combined aqueous layers were acidified using concd HCl. The brown precipitate was dissolved in EtOAc, the solution washed with H2O, dried, filtered and concentrated. After trituration of the residue with Et2O, the product was obtained as a brown solid in 85% yield (0.075 g); mp >300 °C. IR (KBr): 3391, 1819, 1730 cm–1. 1H NMR (400 MHz, DMSO): δ = 7.38 (t, J = 7.2 Hz, 2 H, ArH), 7.59 (t, J = 8.0 Hz, 2 H, ArH), 7.84 (d, J = 8.2 Hz, 2 H, ArH), 8.75 (d, J = 8.0 Hz, 2 H, ArH), 11.99 (s, 2 H, NH). 13C NMR (100 MHz, DMSO-d 6): δ = 112.4 (2 × CH), 115.6 (2 × Cq), 117.6 (2 × Cq), 120.8 (2 × CH), 120.9 (2 × Cq), 123.3 (2 × CH), 127.3 (2 × CH), 129.80 (2 × Cq), 140.2 (2 × Cq), 164.8 (2 × CO). Synthesis of Arcyriaflavin A (1): Anhydride 4 (0.2 g, 0.61 mmol) was heated with ammonium acetate at 140 °C for 3 h. On cooling, H2O was added and the mixture was extracted with EtOAc (6 × 20 mL). The combined organic layers were dried, filtered and concentrated under reduced pressure to obtain orange crystals of arcyriaflavin A in 72% yield; mp >300 °C. IR (KBr): 3586, 3231, 1726, 1692 cm–1. 1H NMR (400 MHz, DMSO): δ = 7.36 (t, J = 7.6 Hz, 2 H, ArH), 7.56 (t, J = 7.6 Hz, 2 H, ArH), 7.82 (d, J = 8.4 Hz, 2 H, ArH), 8.99 (d, J = 8.0 Hz, 2 H, ArH), 11.01 (s, 1 H, NH-imide), 11.85 (s, 2 H, NH-indole). 13C NMR (100 MHz, DMSO): δ = 112.0 (2 × CH), 115.5 (2 × Cq), 119.8 (2 × Cq), 120.23 (2 × CH), 121.5 (2 × Cq), 124.3 (2 × CH), 126.8 (2 × CH), 129.0 (2 × Cq), 140.3 (2 × Cq), 171.3 (2 × CO).