Synlett 2015; 26(03): 307-312
DOI: 10.1055/s-0034-1379500
cluster
© Georg Thieme Verlag Stuttgart · New York

3,5-Disubstituted 2-Aminopyridines via Nickel-Catalyzed Cycloaddition of Terminal Alkynes and Cyanamides

Yao Zhong
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA   Fax: +1(801)5818433   Email: louie@chem.utah.edu
,
Nathan A. Spahn
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA   Fax: +1(801)5818433   Email: louie@chem.utah.edu
,
Ryan M. Stolley
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA   Fax: +1(801)5818433   Email: louie@chem.utah.edu
,
Minh H. Nguyen
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA   Fax: +1(801)5818433   Email: louie@chem.utah.edu
,
Janis Louie*
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA   Fax: +1(801)5818433   Email: louie@chem.utah.edu
› Author Affiliations
Further Information

Publication History

Received: 22 September 2014

Accepted after revision: 05 November 2014

Publication Date:
07 January 2015 (online)


Abstract

The regioselectivity of the Ni/SIPr-catalyzed cycloaddition of terminal alkynes and cyanamides was explored. In general, 3,5-disubstituted 2-aminopyridines were formed as the major product.

Supporting Information

 
  • References

    • 1a Varella JA, Saá C. Chem. Rev. 2003; 103: 3787
    • 1b Kotha S, Brahmachary E, Lahiri K. Eur. J. Org. Chem. 2005; 4741
    • 1c Chopade PR, Louie J. Adv. Synth. Catal. 2006; 348: 2307
    • 1d Heller B, Hapke M. Chem. Soc. Rev. 2007; 36: 1085
    • 1e Shibata T, Tsuchikama K. Org. Biomol. Chem. 2008; 6: 1317
    • 1f Varela JA, Saá C. Synlett 2008; 2571
    • 1g Galan BR, Rovis T. Angew. Chem. Int. Ed. 2009; 48: 2830
    • 1h Agenet N, Buisine O, Slowinski F, Gandon V, Aubert C, Malacria M. Org. React. 2007; 68: 1
    • 2a Ardizzoia GA, Brenna S, LaMonica G, Maspero A, Masciochi N. J. Organomet. Chem. 2002; 649: 173
    • 2b Gevorgyan V, Radhakrishnan U, Takeda A, Rubina M, Rubin M, Yamamoto Y. J. Org. Chem. 2001; 66: 2835
    • 3a Inoue T, Itoh Y, Kazama H, Hashimoto H. Bull. Chem. Soc. Jpn. 1980; 53: 3329
    • 3b Tsuda T, Sumiya R, Saegusa T. Synth. Commun. 1987; 17: 147
    • 3c Tsuda T, Morikawa S, Sumiya R, Saegusa T. J. Org. Chem. 1988; 14: 3140
    • 4a Duong HA, Cross MJ, Louie J. J. Am. Chem. Soc. 2004; 126: 11438
    • 4b Earl RA, Vollhardt KP. C. J. Org. Chem. 1984; 49: 4786
    • 4c Yamamoto Y, Takagishi H, Itoh K. Org. Lett. 2001; 3: 2117
    • 5a Pietro D, Ingrosso G, Lucherini A, Malquori S. J. Mol. Catal. 1987; 40: 267
    • 5b Sugiyama Y, Okamoto S. Synthesis 2011; 2247
    • 5c Boñaga LV. R, Zhang H, Maryanoff BE. Chem. Commun. 2004; 2394
    • 5d Hong P, Yamazaki H. Tetrahedron Lett. 1977; 15: 1333
    • 5e Costa M, Dalcanale E, Dias FS, Gariff C, Tripicchio A, Bigliardi L. J. Organomet. Chem. 2001; 619: 179
    • 6a Varela JA, Castedo L, Saá C. J. Org. Chem. 2003; 68: 8595
    • 6b Yamamoto Y, Kinpara K, Ogawa R, Nishiyama H, Itoh K. Chem. Eur. J. 2006; 12: 5618
    • 7a Tanaka K, Suzuki N, Nishida G. Eur. J. Org. Chem. 2006; 3917
    • 7b Cioni P, Diversi P, Ingrosso G, Lucherini A, Ronca P. J. Mol. Catal. 1987; 40: 337
    • 7c Oberg KM, Lee EE, Rovis T. Tetrahedron 2009; 65: 5056
    • 7d Tanaka K, Takahashi Y, Suda T, Hirano M. Synlett 2008; 1724
    • 7e Costa M, Dias FS, Chiusoli GP, Gazzola GL. J. Organomet. Chem. 1995; 488: 47
    • 8a McCormick MM, Duong HA, Zuo G, Louie J. J. Am. Chem. Soc. 2006; 127: 5030
    • 8b Stolley RM, Maczka MT, Louie J. Eur. J. Org. Chem. 2011; 3815
    • 8c Kumar P, Prescher S, Louie J. Angew. Chem. Int. Ed. 2011; 50: 10694
    • 8d Hoberg H, Oster BW. J. Organomet. Chem. 1983; 252: 359
    • 9a Dieck H, Diercks R. Angew. Chem., Int. Ed. Engl. 1983; 22: 1138
    • 9b Breschi C, Piparo L, Pertici P, Caporusso AM, Vitulli G. J. Organomet. Chem. 2000; 607: 57
    • 9c D’Souza BR, Lane TK, Louie J. Org. Lett. 2011; 13: 2936
    • 9d Lane TK, D’Souza BR, Louie J. J. Org. Chem. 2012; 77: 7555
    • 9e Wang C, Wang D, Xu F, Pan B, Wan B. J. Org. Chem. 2013; 78: 3065
    • 9f Liu Y, Yan X, Yang N, Xi C. Catal. Commun. 2011; 12: 489
  • 10 Tanaka R, Yuza A, Watai Y, Suzuki D, Takayama Y, Sato F, Urabe H. J. Am Chem. Soc. 2005; 127: 7774
    • 11a Tursky M, Lorentz-Petersen LL. R, Olsen LB, Madsen R. Org. Biomol. Chem. 2010; 8: 5576
    • 11b Ueno M, Nobana T, Togo H. J. Org. Chem. 2003; 68: 6424
    • 11c Kamal A, Reddy JS, Ramaiah MJ, Dastagiri D, Bharathi EV, Sagar MV. P, Pushpavalli SN. C. V. L, Ray P, Pal-Bhadra M. Med. Chem. Commun. 2010; 68: 6424
    • 11d Nam T.-G, Nara SJ, Zagol-Ikapitte I, Cooper TL, Valgimigli L, Oates JA, Porter NA, Boutaud O, Pratt DA. Org. Biomol. Chem. 2009; 7: 5103
    • 11e Carlucci G, Colanzi A, Mazzeo P, Quaglia MG. Int. J. Pharm. 1989; 53: 257
    • 11f Acker R.-D, Hamprecht G. US 4395555, 1981
    • 11g Ji H, Delker SL, Li H, Martásek LP, Roman LJ, Poulos TL, Silverman RB. J. Med. Chem. 2010; 53: 7804
  • 12 Motoyama T, Sasabe H, Seino Y, Takamatsu J, Kido J. Chem. Lett. 2011; 40: 306
  • 13 Stolley RM, Duong HA, Louie J. Organometallics 2013; 32: 4952