Synlett 2015; 26(03): 375-379
DOI: 10.1055/s-0034-1379506
letter
© Georg Thieme Verlag Stuttgart · New York

A New Approach to the Synthesis of 4-Phosphonylated β-Lactams

Dorota G. Piotrowska*
Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland   Email: dorota.piotrowska@umed.lodz.pl   Email: iwona.glowacka@umed.lodz.pl
,
Aneta Bujnowicz
Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland   Email: dorota.piotrowska@umed.lodz.pl   Email: iwona.glowacka@umed.lodz.pl
,
Andrzej E. Wróblewski
Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland   Email: dorota.piotrowska@umed.lodz.pl   Email: iwona.glowacka@umed.lodz.pl
,
Iwona E. Głowacka*
Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland   Email: dorota.piotrowska@umed.lodz.pl   Email: iwona.glowacka@umed.lodz.pl
› Author Affiliations
Further Information

Publication History

Received: 10 September 2014

Accepted after revision: 03 November 2014

Publication Date:
07 January 2015 (online)


Abstract

The general and efficient method for the synthesis of 4-phosphonylated β-lactams from N-methyl-C-(diethoxyphosphonyl)nitrone and selected terminal alkynes via Kinugasa reaction was reported. Application of microwave irradiation significantly shortened the reaction time. Stereochemistry of diastereoisomeric products was established based on vicinal H3–H4 couplings in the β-lactam ring.

 
  • References and Notes

  • 1 Arya N, Jagdale AY, Patil TA, Yeramwar SS, Holikatti SS, Dwivedi J, Shishoo CJ, Jain KS. Eur. J. Med. Chem. 2014; 74: 619
  • 2 Burnett DA, Caplen MA. Jr, Davis HR, Burrrier RE, Clader JW. J. Med. Chem. 1994; 37: 1733
  • 3 Slusarchyk WA, Bolton SA, Hartl KS, Huang M.-H, Jacobs G, Meng W, Ogletree ML, Pi Z, Schumacher WA, Seiler SM, Sutton JC, Treuner U, Zahler R, Zhao G, Bisacchi GS. Bioorg. Med. Chem. Lett. 2002; 12: 3235
  • 4 Han WT, Trehan AK, Wright JJ. K, Federici ME, Seiler SM, Meanwell NA. Bioorg. Med. Chem. 1995; 3: 1123
  • 5 Sun L, Vasilevich NI, Fuselier JA, Hocart SJ, Coy DH. Bioorg. Med. Chem. Lett. 2004; 14: 2041
  • 6 Sperka T, Pitlik J, Bagossia P, Tozsera J. Bioorg. Med. Chem. Lett. 2005; 15: 3086
  • 7 Smith DM, Kazi A, Smith L, Long TE, Heldreth B, Turos E, Dou QP. Mol. Pharmacology 2002; 61: 1348
  • 8 Staudinger H. Justus Liebigs Ann. Chem. 1907; 356: 51
  • 9 Punda P, Makowiec S. New J. Chem. 2013; 37: 2254
  • 10 Qi H, Li X, Xu J. Org. Biomol. Chem. 2011; 9: 2702
  • 11 Nahmany M, Melman A. J. Org. Chem. 2006; 71: 5804
  • 12 Mototoshiya J, Hirata K. Chem. Lett. 1988; 211
  • 13 Gomes LF. R, Trindade AF, Candeias NR, Gois PM. P, Afonso CA. M. Tetrahedron Lett. 2008; 49: 7372
  • 14 Candeias NR, Gois PM. P, Pedro MP, Veiros LF, Afonso CA. M. J. Org. Chem. 2008; 73: 5926
  • 15 Candeias NR, Gois PM. P, Pedro MP, Afonso CA. M. J. Org. Chem. 2006; 71: 5489
  • 16 Gois PM. P, Candeias NR, Afonso CA. M. J. Mol. Catal. A: Chem. 2005; 227: 17
  • 17 Du Y, Wiemer DF. J. Org. Chem. 2002; 67: 5709
  • 18 Paul L, Zieloff K. Chem. Ber. 1966; 99: 1431
  • 19 Campbell MM, Carruthers NI, Mickel SJ. Tetrahedron 1982; 38: 2513
  • 20 Satoh H, Tsuji T. Tetrahedron Lett. 1984; 25: 1737
  • 21 Beck J, Gharbi S, Herteg-Fernea A, Vercheval L, Bebrone C, Lassaux P, Zervosen A, Marchan-Brynaert J. Eur. J. Org. Chem. 2009; 85
  • 22 Kita Y, Shibata N, Yoshida N, Tohjo T. Chem. Pharm. Bull. 1992; 40: 1733
  • 23 Shiozaki M, Masuko H. Bull. Chem. Soc. Jpn. 1987; 60: 645
  • 24 Stevens CV, Vekemans W, Moonen K, Rammeloo T. Tetrahedron Lett. 2003; 44: 1619
  • 25 Van Speybroeck V, Moonen K, Hemelsoet K, Stevens CV, Waroquier M. J. Am. Chem. Soc. 2006; 128: 8468
  • 26 Kinugasa M, Hashimoto S. J. Chem. Soc., Chem. Commun. 1972; 466
  • 27 Stecko S, Furman B, Chmielewski M. Tetrahedron 2014; 70: 7817
  • 28 Khangarot RK, Kaliappan KP. Eur. J. Org. Chem. 2013; 7664
  • 29 Shintani R, Fu GC. Angew. Chem. Int. Ed. 2003; 42: 4082
  • 30 Lo MM. C, Fu GC. J. Am. Chem. Soc. 2002; 124: 4572
  • 31 Marco-Contelles J. Angew. Chem. Int. Ed. 2004; 43: 2198
  • 32 Stecko S, Mames A, Furman B, Chmielewski M. J. Org. Chem. 2008; 73: 7402
  • 33 Zhanga X, Hsung RP, Li H, Zhang Y, Johnson WL, Figueroa R. Org. Lett. 2008; 10: 3477
  • 34 Coyne AG, Müller-Bunz H, Guiry P. Tetrahedron: Asymmetry 2007; 18: 199
  • 35 Ye M, Zhou J, Tang Z. J. Org. Chem. 2006; 71: 3576
  • 36 Basak A, Bhattacharya G, Bdour HM. M. Tetrahedron 1998; 54: 6529
  • 37 Piotrowska DG. Tetrahedron Lett. 2006; 47: 5363
  • 38 Piotrowska DG. Tetrahedron 2006; 62: 12306
  • 39 Piotrowska DG, Głowacka IE. Tetrahedron: Asymmetry 2007; 18: 1351
  • 40 Piotrowska DG, Głowacka IE. Tetrahedron: Asymmetry 2007; 18: 2787
  • 41 Piotrowska DG, Cieślak M, Królewska K, Wróblewski AE. Eur. J. Med. Chem. 2011; 46: 1382
  • 42 Piotrowska DG, Balzarini J, Głowacka IE. Eur. J. Med. Chem. 2012; 47: 501
  • 43 Kokosza K, Balzarini J, Piotrowska DG. Bioorg. Med. Chem. 2013; 21: 1097
  • 44 General Procedure AA solution of alkyne 11 (3.0 mmol) in MeCN (1 mL) was cooled to 0 °C under argon atmosphere, and CuI (3 mmol) was added followed by Et3N (3 mmol). After 30 min, the temperature was allowed to reach 25 °C, nitrone 12 (1.0 mmol) in MeCN (1 mL) was added, and the reaction mixture was stirred for 72 h. Subsequently, the reaction mixture was diluted with CHCl3 (5 mL), and the suspension was filtered through the layer of Celite. The solution was concentrated, and the residue was chromatographed on a silica gel column.General Procedure BA solution of alkyne 11 (1.5 mmol) in MeCN (1 mL) was cooled to 0 °C under argon atmosphere, and CuI (0.1 mmol) was added followed by Et3N (0.05 mmol) and DMAP (0.05 mmol). After 30 min, the temperature was allowed to reach 25 °C, nitrone 12 (1.0 mmol) in MeCN (1 mL) was added, and the reaction mixture was irradiated in a Plazmatronika RM800 microwave reactor at 30–35 °C for 4 h. Subsequently, the reaction mixture was diluted with CHCl3 (5 mL), and the suspension was filtered through the layer of Celite. The solution was concentrated, and the residue was chromatographed on a silica gel column.Compound 13a: starting from nitrone 12 (0.10 g, 0.51 mmol), procedure A – 0.016 g, 11%; procedure B – 0.032 g, 21%; colorless oil. IR (film): 3485, 2983, 2931, 1757, 1236, 1025, 752, 699 cm–1. 1H NMR (600 MHz, CDCl3): δ = 7.35–7.30 (m, 2 H), 7.26–7.23 (m, 2 H), 7.21–7.15 (m, 1 H), 4.72 (dd, J = 7.7, 5.9 Hz, 1 H, HCP), 3.98 (dd, J = 5.9, 5.9 Hz, 1 H, HCCP), 3.82–3.74 (m, 1 H), 3.74–3.68 (m, 1 H), 3.68–3.60 (m, 1 H), 3.56–3.48 (m, 1 H), 2.93 (s, 3 H), 1.18 (t, J = 7.1 Hz, 3 H), 1.13 (t, J = 7.1 Hz, 3 H). 13C NMR (151 MHz, CDCl3): δ = 167.63 (d, J = 9.0 Hz, C=O), 131.91 (d, J = 2.8 Hz), 129.50, 128.08, 127.86, 62.15 (d, J = 7.0 Hz), 61.83 (d, J = 6.8 Hz), 57.56 (d, J = 1.7 Hz), 54.98 (d, J = 172.3 Hz), 28.40, 16.37 (d, J = 6.0 Hz), 16.29 (d, J = 6.0 Hz). 31P NMR (243 MHz, CDCl3): δ = 19.08. Anal. Calcd for C14H20NO4P: C, 56.56; H, 6.78; N, 4.71. Found: C, 56.29; H, 6.76; N, 4.87.Compound 14a: starting from nitrone 12 (0.10 g, 0.51 mmol), procedure A – 0.082 g, 54%; procedure B – 0.061 g, 40%; colorless oil. IR (film): 3450, 2979, 2895, 1761, 1239, 1021, 790, 696 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.40–7.28 (m, 5 H), 4.54 (dd, J = 8.9, 2.6 Hz, 1 H, HCP), 4.30–4.18 (m, 4 H), 3.67 (dd, J = 9.1, 2.6 Hz, 1 H, HCCP), 3.01 (s, 3 H), 1.38 (t, J = 7.2 Hz, 3 H), 1.37 (t, J = 7.2 Hz, 3 H). 13C NMR (75.5 MHz, CDCl3): δ = 167.57 (d, J = 12.8 Hz, C=O), 134.20 (d, J = 2.6 Hz), 128.98, 127.94, 127.30, 63.25 (d, J = 6.7 Hz), 62.84 (d, J = 7.0 Hz), 57.85 (d, J = 2.5 Hz), 56.36 (d, J = 164.6 Hz), 28.77, 16.94 (d, J = 5.3 Hz), 16.87 (d, J = 5.6 Hz). 31P NMR (243 MHz, CDCl3): 20.52. Anal. Calcd for C14H20NO4P: C, 56.56; H, 6.78; N, 4.71. Found: C, 56.42; H, 6.70; N, 4.73.
  • 45 Barrow KD, Spotswood TM. Tetrahedron Lett. 1965; 6: 3325
  • 46 Moriconi EJ, Kelly JF. J. Org. Chem. 1968; 33: 3036
  • 47 Sterk H, Uray G, Ziegler E. Monatsh. Chem. 1972; 103: 544