Synlett 2015; 26(09): 1230-1232
DOI: 10.1055/s-0034-1380349
letter
© Georg Thieme Verlag Stuttgart · New York

Nanoparticulate Copper(II) Oxide Catalyzed Synthesis of Guanidine Derivatives and Their Conversion into Functionalized Iminoguanidines

Issa Yavari*
Department of Chemistry, University of Tarbiat Modares, P.O. Box 14115-175, Tehran, Iran   Email: yavarisa@modares.ac.ir
,
Esmat Sodagar
Department of Chemistry, University of Tarbiat Modares, P.O. Box 14115-175, Tehran, Iran   Email: yavarisa@modares.ac.ir
,
Manijeh Nematpour
Department of Chemistry, University of Tarbiat Modares, P.O. Box 14115-175, Tehran, Iran   Email: yavarisa@modares.ac.ir
,
Mohammad Askarian-Amiri
Department of Chemistry, University of Tarbiat Modares, P.O. Box 14115-175, Tehran, Iran   Email: yavarisa@modares.ac.ir
› Author Affiliations
Further Information

Publication History

Received: 06 December 2014

Accepted after revision: 16 February 2015

Publication Date:
01 April 2015 (online)


Abstract

A simple synthesis of functionalized iminoguanidines from N-sulfoketenimines and N,N′,N′′-trisubstituted guanidines, generated by nanoparticulate copper(II) oxide-catalyzed hydroamination of di(cyclo)alkylcarbodiimides, is described.

Supporting Information

 
  • References and Notes

  • 1 Pottabathula S, Royo B. Tetrahedron Lett. 2012; 53: 5156
  • 2 Alonso-Moreno C, Antiñolo A, Carrillo-Hermosilla F, Otero A. Chem. Soc. Rev. 2014; 43: 3406
  • 3 Kantam ML, Priyadarshini S, Joseph PJ. A, Srinivas P, Vinu A, Klabunde KJ, Nishina Y. Tetrahedron 2012; 68: 5730
    • 4a Ong T.-G, O’Brien JS, Korobkov I, Richeson DS. Organometallics 2006; 25: 4728
    • 4b Shen H, Chan H.-S, Xie Z. Organometallics 2006; 25: 5515
    • 4c Li J, Zhang Z, Fan E. Tetrahedron Lett. 2004; 45: 1267
    • 4d Evindar G, Batey RA. Org. Lett. 2003; 5: 133
    • 4e Powell DA, Ramsden PD, Batey RA. J. Org. Chem. 2003; 68: 2300
    • 4f Linton BR, Carr AJ, Orner BP, Hamilton AD. J. Org. Chem. 2000; 65: 1566
    • 4g Feichtinger K, Zapf C, Sings HL, Goodman M. J. Org. Chem. 1998; 63: 3804
    • 5a Tin MK. T, Yap GP. A, Richeson DS. Inorg. Chem. 1998; 37: 6728
    • 5b Molina P, Alajarín M, Sánchez-Andrada P, Sanz-Aparicio J, Martínez-Ripoll M. J. Org. Chem. 1998; 63: 2922
    • 5c Chinchilla R, Nájera C, Sánchez-Agulló P. Tetrahedron: Asymmetry 1994; 5: 1393
  • 6 Suhs T, König B. Mini-Rev. Org. Chem. 2006; 3: 315
  • 7 Li D, Guang J, Zhang W.-X, Wang Y, Xi Z. Org. Biomol. Chem. 2010; 8: 1816
  • 8 Duan H, Lin X, Liu G, Xu L, Li F. Chin. J. Chem. Eng. 2008; 16: 325
  • 9 Kantam ML, Yadav J, Laha S, Sreedhar B, Jha S. Adv. Synth. Catal. 2007; 349: 1938
  • 10 Babu SG, Karvembu R. Ind. Eng. Chem. Res. 2011; 50: 9594
  • 11 Venkanna A, Swapna K, Rao PV. RSC Adv. 2014; 4: 15154
  • 12 Santra S, Bagdi AK, Majee A, Hajra A. RSC Adv. 2013; 3: 24931
  • 13 Yavari I, Sodagar E, Nematpour M. Helv. Chim. Acta 2014; 97: 420
  • 14 Yavari I, Nematpour M, Sodagar E. Synlett 2013; 24: 161
  • 15 Yavari I, Nematpour M. Synlett 2013; 24: 1420
  • 16 Yavari I, Nematpour M, Bayat MJ. Mol. Diversity 2013; 17: 809
  • 17 N-(Cyclo)alkyl-N-{[(cyclo)alkylamino](arylimino)methyl}-N′-(arylsulfonyl)hexanimidamides 7; General Procedure Aniline 1 (1 mmol), carbodiimide 2 (1.2 mmol), and nanoparticulate CuO (10 mol%) were stirred in toluene (2 mL) at 80 °C for 8 h. A mixture of sulfonyl azide 5, (1.2 mmol), alkyne 4 (1 mmol), CuI (0.019 g, 0.1 mmol), and Et3N (0.101 g, 1 mmol) in toluene (2 mL) was slowly added, and the mixture was stirred at r.t. under N2. When the reaction was complete [~4 h; TLC (EtOAc–hexane, 1:5)], the mixture was diluted with aq NH4Cl (3 mL) and stirred for 30 min. The layers were separated and the aqueous layer was extracted with CH2Cl2 (3 × 3 mL). The organic fractions were combined, dried (Na2SO4), filtered, and concentrated under reduced pressure, and the residue was purified by flash column chromatography [silica gel (230–400 mesh; Merck), hexane–EtOAc (5:1)]. N-Cyclohexyl-N-[(cyclohexylamino)(phenylimino)methyl]-N′-(phenylsulfonyl)hexanimidamide (7a) Colorless crystals; yield: 0.45 g (84%); mp 134–137 °C. IR (KBr): 3329, 3053, 2930, 1652, 1590, 1513, 1448, 1343, 1266, 1146, 1092, 752 cm–1. 1H NMR (500 MHz, CDCl3): δ = 0.98 (t, 3 J = 6.8 Hz, 3 H), 1.23–2.38 (m, 28 H), 3.27 (quint, 3 J = 6.8 Hz, 1 H), 3.62 (quint, 3 J = 6.8 Hz, 1 H), 6.73–6.83 (m, 3 H), 6.96 (s, 1 H), 7.18 (d, 3 J = 7.9 Hz, 2 H), 7.42–7.61 (m, 3 H), 7.88 (d, 3 J = 7.9 Hz, 2 H). 13C NMR (125.7 MHz, CDCl3): δ = 13.6 (Me), 21.5 (CH2), 22.3 (2 CH2), 24.9 (CH2), 25.5 (2 CH2), 26.0 (CH2), 29.1 (CH2), 30.4 (CH2), 31.0 (CH2), 31.3 (CH2), 32.6 (CH2), 34.0 (CH2), 43.6 (CH2), 50.8 (CH), 57.8 (CH), 122.0 (3 CH), 125.1 (2 CH), 126.4 (2 CH), 128.5 (2 CH), 132.4 (CH), 143.2 (C), 144.7 (C), 154.8 (C), 155.5 (C). MS: m/z (%) = 536 (8) [M+], 478 (20), 395 (24), 362 (40), 238 (36), 141 (88), 91 (38), 77 (100). Anal. Calcd for C31H44N4O2S (536.77): C, 69.37; H, 8.26; N, 10.44. Found: C, 69.81; H, 8.32; N, 10.51.