Synlett 2015; 26(11): 1515-1519
DOI: 10.1055/s-0034-1380424
letter
© Georg Thieme Verlag Stuttgart · New York

Oxidative Homocoupling of Diheteroaryl- or Diarylmanganese Reagents Generated via Directed Manganation Using TMP2Mn

Diana Haas
a   Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5–13, 81377 Munich, Germany   Email: Paul.Knochel@cup.uni-muenchen.de
,
Jeffrey M. Hammann
a   Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5–13, 81377 Munich, Germany   Email: Paul.Knochel@cup.uni-muenchen.de
,
Alban Moyeux
b   Institut de Recherche de Chimie Paris, CNRS - Chimie ParisTech, 11 Rue Pierre et Marie Curie, 75005 Paris, France
c   Université Paris 13, Sorbonne Paris Cité, 74 Rue Marcel Cachin, 93017 Bobigny, France
,
Gérard Cahiez
b   Institut de Recherche de Chimie Paris, CNRS - Chimie ParisTech, 11 Rue Pierre et Marie Curie, 75005 Paris, France
,
Paul Knochel*
a   Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5–13, 81377 Munich, Germany   Email: Paul.Knochel@cup.uni-muenchen.de
› Author Affiliations
Further Information

Publication History

Received: 15 April 2015

Accepted after Revision: 25 May 2015

Publication Date:
11 June 2015 (online)


Abstract

We report an oxidative homocoupling of diheteroaryl or diarylmanganese reagents prepared by directed manganation using TMP2Mn·2MgCl2·4LiCl. The resulting diorganomanganese reagents can efficiently undergo an oxidative dimerization leading to the homocoupling products in good yields. Remarkably, a number of functional groups, as well as sensitive heterocycles are tolerated using this metalation–dimerization procedure.

Supporting Information

 
  • References and Notes

  • 1 These authors contributed equally to this work.
    • 2a Thomson RH. The Chemistry of Natural Products 1985
    • 2b Hassan J, Sevignon M, Cozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
    • 2c Corbet J.-P, Mignani G. Chem. Rev. 2006; 106: 2651

      For representative examples of palladium-catalyzed homocoupling reactions, see:
    • 3a Venkatraman S, Li CJ. Org. Lett. 1999; 1: 1133
    • 3b Boully L, Darabantu M, Turck A, Plé N. J. Heterocycl. Chem. 2005; 42: 1423
    • 3c Lee PH, Seomoon D, Lee K. Org. Lett. 2005; 7: 343
    • 3d Wang L, Zhang Y, Liu L, Wang Y. J. Org. Chem. 2006; 71: 1284
    • 3e Catellani M, Motti E, Della CáN, Ferraccioli R. Eur. J. Org. Chem. 2007; 4153
    • 3f Lee K, Lee PH. Tetrahedron Lett. 2008; 49: 4302
    • 3g Lin S, Ischay MA, Fry CG, Yoon TP. J. Am. Chem. Soc. 2011; 133: 19350

      For representative examples of nickel-catalyzed homocoupling reactions, see:
    • 4a Percec V, Bae J.-Y, Zhao M, Hill DH. J. Org. Chem. 1995; 60: 176
    • 4b Jutand A, Mosleh A. J. Org. Chem. 1997; 62: 261
    • 4c Jhaveri SB, Carter KR. Chem. Eur. J. 2008; 14: 6845
    • 5a Handbook on the Toxicology of Metals. Friberg L, Nordberg GF, Vouk VB. Elsevier; Amsterdam: 1986
    • 5b Hughes MN. Compr. Coord. Chem. 1987; 67: 643
    • 5c Nickel and the Skin: Absorption, Immunology, Epidemology, and Metallurgy. Hostynek JJ, Maibach HI. CRC Press; Boca Raton: 2002

      For recent examples of transition-metal-catalyzed homocoupling reactions of aryl-metal reagents, see:
    • 6a Mukhopadhyay S, Rothenberg G, Gitis D, Sasson Y. Org. Lett. 2000; 2: 211
    • 6b Mathews CJ, Smith PJ, Welton T. Chem. Commun. 2000; 1249
    • 6c Lee HM, Nolan SP. Org. Lett. 2000; 2: 2053
    • 6d Baxter PN. W. J. Org. Chem. 2000; 65: 1257
    • 6e Hossain KM, Shibata T, Takagi K. Synlett 2000; 1137
    • 6f Spivey AC, Fekner T, Spey SE. J. Org. Chem. 2000; 65: 3154
    • 6g Handy ST, Zhang X. Org. Lett. 2001; 3: 233
    • 6h Revell JD, Ganesan A. Org. Lett. 2002; 4: 3071
    • 6i Miao W, Chan TH. Org. Lett. 2003; 5: 5003
    • 6j Cahiez G, Chaboche C, Mahuteau-Betzer F, Ahr M. Org. Lett. 2005; 7: 1943
    • 6k Nagano T, Hayashi T. Org. Lett. 2005; 7: 491
    • 6l Xiao J.-C, Shreeve JM. J. Org. Chem. 2005; 70: 3072
    • 6m Wang L, Zhang Y, Liu L, Wang Y. J. Org. Chem. 2006; 71: 1284
    • 6n Krasovskiy A, Tishkov A, del Amo V, Mayr H, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 5010
    • 6o Yuan Y, Bian Y. Appl. Organomet. Chem. 2008; 22: 15
    • 6p Lu F. Tetrahedron Lett. 2012; 53: 2444
    • 6q Toummini D, Ouazzani F, Taillefer M. Org. Lett. 2013; 15: 4690
    • 6r Puthiaraj P, Suresh P, Pitchumani K. Green Chem. 2014; 16: 2865
    • 7a Krasovskiy A, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 3333
    • 7b Krasovskiy A, Straub BF, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 159
    • 7c Cahiez G, Moyeux A, Buendia J, Duplais C. J. Am. Chem. Soc. 2007; 129: 13788
    • 7d Piller FM, Metzger A, Schade MA, Haag BA, Gavryushin A, Knochel P. Chem. Eur. J. 2009; 15: 7192
    • 8a Do H.-Q, Daugulis O. J. Am. Chem. Soc. 2009; 131: 17052
    • 8b Monguchi D, Yamamura A, Fujiwara T, Somete T, Mori A. Tetrahedron Lett. 2010; 51: 850
    • 8c Truong T, Alvarado J, Tran LD, Daugulis O. Org. Lett. 2010; 12: 1200
    • 8d Graaf MD, Moeller KD. J. Org. Chem. 2015; 80: 2032
    • 8e Peng Z, Li N, Sun X, Wang F, Xu L, Jiang C, Song L, Yan Z.-F. Org. Biomol. Chem. 2014; 12: 7800
    • 9a Wunderlich SH, Kienle M, Knochel P. Angew. Chem. Int. Ed. 2007; 48: 7256
    • 9b Preparation of TMP2Mn·2MgCl2·4LiCl (1) A dry and argon-flushed Schlenk flask is charged with TMPMgCl·LiCl (348 mL, 400 mmol) and cooled to 0 °C. A solution of MnCl2·2LiCl (1.0 N in THF, 200 mL, 200 mmol) is added over a period of 15 min. After 2 h at 0 °C, the obtained solution of TMP2Mn·2MgCl2·4LiCl (1) is titrated with benzoic acid using 4-(phenylazo)diphenylamine as indicator prior to use showing a concentration of 0.40 M. The reagent is stirred and stored under aluminum foil excluded from light.
  • 10 Using other oxidants such as 1,2-dichloroethane, 1,2-dibromoethane, or oxygen only gave poor results.
    • 11a Snieckus V. Chem. Rev. 1990; 90: 879
    • 11b Hartung CG, Snieckus V In Modern Arene Chemistry. Astruc D. Wiley-VCH; Weinheim: 2002
    • 11c Macklin T, Snieckus V In Handbook of C–H Transformations . Dyker G. Wiley; Weinheim: 2005
    • 11d Alessi M, Larkin AL, Ogilvie KA, Green LA, Lai S, Lopez S, Snieckus V. J. Org. Chem. 2007; 72: 1588
    • 12a Wunderlich S, Knochel P. Chem. Commun. 2008; 6387
    • 12b Mosrin M, Knochel P. Org. Lett. 2009; 11: 1837
    • 12c Mosrin M, Monzon G, Bresser T, Knochel P. Chem. Commun. 2009; 5615
    • 12d Mosrin M, Bresser T, Knochel P. Org. Lett. 2009; 11: 3406
    • 12e Bresser T, Mosrin M, Monzon G, Knochel P. J. Org. Chem. 2010; 75: 4686
    • 12f Bresser T, Monzon G, Mosrin M, Knochel P. Org. Process Res. Dev. 2010; 14: 1299
    • 12g Bresser T, Knochel P. Angew. Chem. Int. Ed. 2011; 50: 1914
    • 13a Wunderlich S, Knochel P. Angew. Chem. Int. Ed. 2007; 46: 7685
    • 13b Mosrin M, Knochel P. Chem. Eur. J. 2009; 15: 1468
    • 13c Wunderlich S, Rohbogner CJ, Unsinn A, Knochel P. Org. Process Res. Dev. 2010; 14: 339
    • 14a Mosrin M, Knochel P. Org. Lett. 2008; 10: 2497
    • 14b Dunst C, Knochel P. J. Org. Chem. 2011; 76: 6972
    • 15a Krasovskiy A, Krasovskaya V, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 2958
    • 15b Clososki GC, Rohbogner CJ, Knochel P. Angew. Chem. Int. Ed. 2007; 46: 7681
    • 15c Klatt T, Roman DS, León T, Knochel P. Org. Lett. 2014; 16: 123
  • 16 General Procedure for the Metalation and Homocoupling of (Hetero)arenes A dried and argon-flushed Schlenk tube is charged with the corresponding substrate (1.0 mmol, 1.0 equiv) and dissolved in THF (1.0 mL). TMP2Mn·2MgCl2·4LiCl (1.5 mL, 0.6 mmol, 0.6 equiv, 0.40 M solution in THF) is added dropwise at the given temperature and stirred until a reaction aliquot quenched with iodine in THF showed full consumption of the starting material. Then, the reaction mixture is cooled to the given temperature, and chloranil (1.0 mmol, 1.0 equiv) dissolved in THF (4.0 mL) is added dropwise. The reaction is stirred for 0.5 h and is then quenched with sat. aq NH4Cl solution and extracted with CH2Cl2 (3 × 25 mL). The crude product is purified by column chromatography on silica to yield the corresponding title compound. Characterization of Typical Homocoupling Products 2,2′-Dichloro-[4,4′-bipyridine]-3,3′-dicarbonitrile (6a) White solid; yield 74%, 102 mg; mp 197–199 °C. 1H NMR (400 MHz, CDCl3): δ = 8.79 (d, J = 5.0 Hz, 2 H), 7.49 (d, J = 5.0 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 154.6, 153.0, 148.6, 122.2, 112.8, 109.5 ppm. FT-IR (ATR): ν = 2253, 1565, 1545, 1525, 1470, 1440, 1369, 1209, 1090, 904, 840, 807, 725, 690 cm–1. HRMS (EI): m/z [M]+ calcd for C12H4Cl2N4: 273.9813; found: 273.9809. 3,3′,6,6′-Tetramethoxy-4,4′-bipyridazine (6f) Off-white solid; yield 67%, 95 mg; mp 230–232 °C. 1H NMR (400 MHz, CDCl3): δ = 7.02 (s, 2 H), 4.09 (s, 6 H), 4.04 (s, 6 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 161.9, 158.7, 126.5, 121.1, 55.0, 54.8 ppm. FT-IR (ATR): ν = 3020, 2999, 2958, 1690, 1679, 1608, 1569, 1526, 1469, 1452, 1390, 1363, 1341, 1264, 1244, 1206, 1183, 1176, 1130, 1109, 1008, 999, 907, 899, 887, 828, 768, 756, 712, 676, 662 cm-1. HRMS (EI): m/z [M]+ calcd for C12H14N4O4: 278.1015; found: 278.1010. Diethyl 6,6′-Dicyano-[1,1′-biphenyl]-2,2′-dicarboxylate (8d) Yellowish solid; yield 87%, 153 mg; mp 180–182 °C. 1H NMR (600 MHz, CDCl3): δ = 8.38 (dd, J= 8.0, 1.3 Hz, 2 H), 7.93 (dd, J= 7.8, 1.3 Hz, 2 H), 7.66 (t, J= 7.9 Hz, 2 H), 4.11 (q, J = 7.1 Hz, 4 H), 1.08 (t, J = 7.2 Hz, 6 H) ppm. 13C NMR (150 MHz, CDCl3): δ = 164.3, 143.4, 136.0, 134.7, 130.5, 129.1, 116.3, 114.3, 61.6, 13.7 ppm. FT-IR (ATR): ν = 2985, 2255, 2231, 1717, 1578, 1477, 1447, 1428, 1393, 1368, 1288, 1273, 1182, 1148, 1103, 1020, 905, 865, 829, 763, 727 cm–1. HRMS (EI): m/z [M]+ calcd for C20H16N2O4: 348.1110; found: 348.1102.