Synlett, Inhaltsverzeichnis Synlett 2015; 26(10): 1352-1356DOI: 10.1055/s-0034-1380515 letter © Georg Thieme Verlag Stuttgart · New YorkExpedient Synthesis of 6-Acylindolo[1,2-a]quinoxalines Adam Trawczyński a Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01-224 Warsaw, Poland eMail: zbigniew.wrobel@icho.edu.pl , Magdalena Telega b Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland , Zbigniew Wróbel* a Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01-224 Warsaw, Poland eMail: zbigniew.wrobel@icho.edu.pl› InstitutsangabenArtikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract A novel route leading to 6-acylindolo[1,2-a]quinoxalines involving condensation of N-(2-iodoaryl)-2-nitrosoanilines with β-diketones followed by Heck cyclization is described. Key words Key wordscyclization - condensation - heterocycles - annulation - Heck reaction - indoles Volltext Referenzen References and Notes 1a Lin P.-T, Salunke DB, Chen LH, Sun ChM. Org. Biomol. Chem. 2011; 9: 2925 1b Xu H, Fan LL. Eur. J. Med. Chem. 2011; 46: 1919 2a Patil NT, Kavthe RD, Shinde VS, Sridhar B. J. Org. Chem. 2010; 75: 3371 2b Wang L, Guo W, Zhang X.-X, Xia X.-D, Xiao W.-J. Org. Lett. 2012; 14: 740 2c Samala S, Arigela RK, Kant R, Kundu B. J. Org. Chem. 2014; 79: 2491 3a Wróbel Z, Kwast A. Synlett 2007; 1525 3b Wróbel Z, Kwast A. Synthesis 2010; 3865 4a Wróbel Z, Stachowska K, Kwast A, Gościk A, Królikiewicz M, Pawłowski R, Turska I. Helv. Chim. Acta 2013; 96: 956 4b Królikiewicz M, Cmoch P, Wróbel Z. Synlett 2013; 24: 973 4c Wróbel Z, Królikiewicz M. J. Heterocycl. Chem. 2014; 51: 123 4d Królikiewicz M, Błaziak K, Danikiewicz W, Wróbel Z. Synlett 2013; 24: 1945 5 Trawczyński A, Wróbel Z. Synlett 2014; 25: 2773 For representative intramolecular Heck reactions of enamines leading to indoles, see: 6a Baran PS, Hafensteiner BD, Ambhaikar NB, Guerrero CA, Gallagher JD. J. Am. Chem. Soc. 2006; 128: 8678 6b Jia J, Zhu J. J. Org. Chem. 2006; 71: 7826 6c Fuwa H, Sasaki M. Org. Lett. 2007; 9: 3347 6d Ackermann L, Kaspar LT, Gschrei CJ. Chem. Commun. 2004; 2824 6e Kasahara A, Izumi T, Murakami S, Yanai H, Takatori M. Bull. Chem. Soc. Jpn. 1986; 59: 927 6f Garcia-Cuadrado D, de Mendoza P, Braga AA. C, Maseras F, Echavarren AM. J. Am. Chem. Soc. 2007; 129: 6880 6g Michael JP, Chang S.-F, Wilson C. Tetrahedron Lett. 1993; 8365 6h Barluenga J, Fernandez MA, Aznar F, Valdes C. Chem. Eur. J. 2005; 11: 2276 6i Watanabe T, Arai S, Nishida A. Synlett 2004; 907 6j Maruyama J, Yamashita H, Watanabe T, Arai S, Nishida A. Tetrahedron 2009; 65: 1327 6k Latham EJ, Stanforth SP. J. Chem. Soc., Perkin Trans. 1 1997; 2059 6l Iida H, Yuasa Y, Kibayashi C. J. Org. Chem. 1980; 45: 2938 7a Jeffery T. Tetrahedron Lett. 1985; 26: 2667 7b Jeffery T. Tetrahedron 1996; 52: 10113 8 General Procedure for the Synthesis of N-(2-Iodoaryl)-2-nitrosoanilines 1a–i To a cooled solution of KOt-Bu (3,7 g, 30 mmol) in DMF (50 mL) was added dropwise at –60 °C a solution of the appropriate 2-iodoaniline (9.6 mmol) in DMF (3 mL) and the nitroarene (9.6 mmol) in DMF (8 mL). The mixture was stirred at –60 °C for 0.5 h then the temperature was raised slowly to –30 °C, and the reaction was continued for an additional 1 h, poured into sat. NH4Cl solution (200 mL) and extracted with EtOAc. The extract was washed with H2O, brine, and dried with Na2SO4. After evaporation, the crude product mixture was subjected to column chromatography (SiO2, hexane–toluene). For analytical data, see the Supporting Information. 9 General Procedure for the Preparation of Compounds 4 To a solution of the N-(2-iodoaryl)-2-nitrosobenzamine 1 (2 mmol) and an appropriate 1,3-diketone 2 (2 mmol) in dry MeCN (10 mL) was added t-BuNH2 (4 mmol). The mixture was stirred at r.t. for 1–4 d (see the Supporting Information). The solvent and other volatile materials were then evaporated in vacuo, and the crude product was used in the next step without purification. The reaction vial containing the crude product was charged with Pd(OAc)2 (45 mg, 0.2 mmol), n-Bu4NCl·H2O (method A; 1050 mg, 3.5 mmol) or n-Bu4NBr (method B; 1127 mg, 3.5 mmol) and KOAc (1000 mg, 10.2 mmol). The flask was purged with argon, then DMF (10 mL) was added, and argon was continuously bubbled via the reaction mixture for 20 min. The mixture was then heated under a positive argon pressure in an oil bath at 60–65 °C for 24 h. After cooling down some amount of H2O (ca. 5 mL) was added. In the cases when a solid product precipitated it was filtered off and washed with EtOH, H2O, and EtOAc repeatedly, to yield the product pure on TLC. Analytical sample was obtained by recrystallization from DMF. In the cases of soluble products (4ec,ha,hb,ia) the mixture was diluted with H2O and extracted with EtOAc. The extract was thoroughly washed with H2O, dried (Na2SO4), and the solvent was evaporated. The residue was separated by column chromatography (SiO2, hexane–EtOAc). Analytical sample was recrystallized from hexane–EtOAc. 10 Analytical Data for the Selected 6-Acylindolo[1,2-a]quinoxalines 4 Compound 4ba (condensation time 4 d): orange crystals; mp 273–275 °C (DMF). 1H NMR (500 MHz, CF3CO2D): δ = 7.59–7.64 (m, 2 H), 7.72 (d, J = 8.7 Hz, 1 H), 7.78 (s, 1 H), 7.84–7.92 (m, 2 H), 8.00–8.04 (m, 3 H), 8.10 (d, J = 8.7 Hz, 1 H), 8.52 (d, J = 9.4 Hz, 1 H), 8.74 (s, 1 H). 13C NMR (125 MHz, CF3CO2D): δ = 115.17, 115.51, 116.38, 121.91, 123.23, 123.65, 125.72, 127.67, 129.44, 130.44, 130.62, 131.44, 132.93, 132.97, 134.90, 137.61, 140.74, 147.55, 161.34, 185.62. MS (EI): m/z (%) = 394 (13), 393 (18), 392 (68), 391 (36), 390 (100) [M+•], 389 (18), 364 (15), 363 (23), 362 (23), 261 (28), 357 (10), 355 (29), 327 (15), 250 (14), 177 (12). HRMS (EI): m/z calcd for C22H12N2OCl2: 390.0327; found: 390.0324. Compound 4fa (condensation time 1 d): orange crystals; mp 252–254 °C (DMF). 1H NMR (500 MHz, CF3CO2D): δ = 7.54–7.94 (m, 7 H), 7.96–8.12 (m, 2 H), 8.14–8.26 (m, 1 H), 8.54–8.68 (m, 1 H), 8.77 (s, 1 H). 13C NMR (125 MHz, CF3CO2D): δ =107.88 (d, J CF = 24 Hz), 116.21, 121.92, 122.44 (d, J CF = 28 Hz), 123.81, 125.91, 125.97, 127.56, 129.45, 130.83, 131.56, 131.65, 131.74, 131.78 (d, J CF = 255 MHz), 133.63, 137.63, 140.71, 147.26, 185.80 (one C invisible). MS (EI): m/z (%) = 376 (37), 374 (100) [M+•], 373 (31), 348 (10), 347 (19), 346 (31), 345 (38), 234 (12), 105 (43), 77 (41). HRMS (EI): m/z calcd for C22H12N2OClF: 374.0622; found: 374.0618. Compound 4hb (condensation time 1 d): orange crystals; mp 185–187 °C (hexane–EtOAc). 1H NMR (400 MHz, CDCl3): δ = 1.46 (s, 9 H), 2.79 (s, 3 H), 7.33 (dd, J = 8.8, 2.0 Hz, 1 H), 7.65 (dd, J = 9.2, 2.0 Hz, 1 H), 7.86–7.91 (m, 2 H), 7.92 (d, J = 2.0 Hz, 1 H), 8.17 (d, J = 9.2 Hz, 1 H), 8.30 (d, J = 2.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 26.3, 31.7, 35.0, 104.4, 113.78, 114.8, 119.0, 123.9, 124.3, 126.0, 130.4, 130.4, 132.0, 132.6, 133.2, 136.6, 146.6, 148.6, 199.4. MS (EI): m/z (%) = 352 (35), 351 (24), 350 (100) [M+•], 337 (30), 336 (20), 335 (87), 44 (32). HRMS (EI): m/z calcd for C21H19N2OCl: 350.1186; found: 350.1190. Zusatzmaterial Zusatzmaterial Supporting Information