Synlett 2015; 26(10): 1408-1412
DOI: 10.1055/s-0034-1380654
letter
© Georg Thieme Verlag Stuttgart · New York

A Facile Route to Substituted Bidentate and Tridentate Ligands Capable of Forming Six-membered Chelate Rings with Transition-Metal Ions

Amlan K. Pal
a   Département de Chimie, Université de Montréal, Montréal, Québec H3T 1J4, Canada   Email: garry.hanan@umontreal.ca
,
Pavan Kumar Mandali
a   Département de Chimie, Université de Montréal, Montréal, Québec H3T 1J4, Canada   Email: garry.hanan@umontreal.ca
b   Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India   Email: dillip@iitm.ac.in
,
Dillip Kumar Chand*
b   Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India   Email: dillip@iitm.ac.in
,
Garry S. Hanan*
a   Département de Chimie, Université de Montréal, Montréal, Québec H3T 1J4, Canada   Email: garry.hanan@umontreal.ca
› Author Affiliations
Further Information

Publication History

Received: 05 December 2014

Accepted: 30 March 2015

Publication Date:
04 May 2015 (online)


Abstract

A facile one-pot synthesis of mono(hpp)- or di(hpp)-substituted N-heterocyclic ligands from halogenated N-heterocycles and 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine (H-hpp) is presented. N,N-Bidentate and N,N,N-tridentate ligands incorporating electron-donating and electron-withdrawing substituents can also be readily synthesized using this method.

Supporting Information

 
  • References and Notes

  • 1 Gill MR, Garcia-Lara J, Foster SJ, Smythe C, Battaglia G, Thomas JA. Nat. Chem. 2009; 1: 662 ; and references cited therein
  • 2 Thompson DW, Ito A, Meyer TJ. Pure Appl. Chem. 2013; 85: 1257
  • 3 Eisenberg R. Science 2009; 324: 44 ; and references cited therein
  • 4 Bomben PG, Robson KC. D, Koivisto BD, Berlinguette CP. Coord. Chem. Rev. 2012; 256: 1438 ; and references cited therein
    • 5a Hofmeier H, Schubert US. Chem. Soc. Rev. 2004; 33: 373
    • 5b Brown DG, Sanguantrakun N, Schulze B, Schubert US, Berlinguette CP. J. Am. Chem. Soc. 2012; 134: 12354
    • 5c Pal AK, Laramée-Milette B, Hanan GS. RSC Adv. 2014; 4: 21262
    • 5d Pal AK, Laramée-Milette B, Hanan GS. Inorg. Chim. Acta 2014; 418: 15
    • 5e Kaes C, Katz A, Hosseini MW. Chem. Rev. 2000; 100: 3553
    • 5f Schubert US, Hofmeier H, Newkome GR. Modern Terpyridine Chemistry 2006
    • 5g Wang J, Hanan GS. Synlett 2005; 1251
    • 5h Polson MI. J, Medlycott EA, Hanan GS, Mikelsons L, Taylor NJ, Watanabe M, Tanaka Y, Loiseau F, Passalacqua R, Campagna S. Chem. Eur. J. 2004; 10: 3640
    • 5i Medlycott EA, Hanan GS, Loiseau F, Campagna S. Chem. Eur. J. 2007; 13: 2837
    • 6a Pal AK, Hanan GS. Chem. Soc. Rev. 2014; 43: 6184
    • 6b Medlycott EA, Hanan GS. Chem. Soc. Rev. 2005; 34: 133
    • 6c Medlycott EA, Hanan GS. Coord. Chem. Rev. 2006; 250: 1763
    • 7a Abrahamsson M, Jäger M, Österman T, Eriksson L, Persson P, Becker H.-C, Johansson O, Hammarström L. J. Am. Chem. Soc. 2006; 128: 12616
    • 7b Jäger M, Kumar RJ, Görls H, Bergquist J, Johansson O. Inorg. Chem. 2009; 48: 3228
    • 7c Abrahamsson M, Jäger M, Kumar RJ, Österman T, Persson P, Becker H.-C, Johansson O, Hammarström L. J. Am. Chem. Soc. 2008; 130: 15533
    • 7d Hammarström L, Johansson O. Coord. Chem. Rev. 2010; 254: 2546 ; and references cited therein
    • 8a Goodall W, Williams JA. G. Chem. Commun. 2001; 2514
    • 8b Roberto D, Tessore F, Ugo R, Bruni S, Manfredi A, Quici S. Chem. Commun. 2002; 846
  • 9 Sabot C, Kumar KA, Meunier S, Mioskowski C. Tetrahedron Lett. 2007; 48: 3863
  • 10 Tundel RE, Anderson KW, Buchwald SL. J. Org. Chem. 2006; 71: 430
    • 11a Huczynski A, Brzezinski B. 1,5,7-Triazabicyclo[4.4.0]dec-5-ene. In e-EROS Encyclopedia of Reagents for Organic Synthesis. John Wiley and Sons; New York: 2008. doi: 10.1002/047084289X.rn00786
    • 11b Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts. Ishikawa T. John Wiley and Sons; Chichester: 2009
  • 12 Oakley SH, Coles MP, Hitchcock PB. Inorg. Chem. 2004; 43: 7564
  • 13 Coles MP. Chem. Commun. 2009; 3659
    • 14a Surry DS, Buchwald SL. Chem. Sci. 2011; 2: 27
    • 14b Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
    • 14c Shrestha R, Mukherjee P, Tan Y, Litman ZC, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 9303
  • 15 Zim D, Buchwald SL. Org. Lett. 2003; 5: 2413
  • 16 Pal AK, Nag S, Ferreira JM, Brochery V, Ganga GL, Santoro A, Serroni S, Campagna S, Hanan GS. Inorg. Chem. 2014; 53: 1679
    • 17a Pal AK, Zaccheroni N, Campagna S, Hanan GS. Chem. Commun. 2014; 50: 6846
    • 17b Pal AK, Serroni S, Zaccheroni N, Campagna S, Hanan GS. Chem. Sci. 2014; 5: 4800
  • 18 Pal AK, Hanan GS. Dalton Trans. 2014; 43: 11811
    • 19a Pal AK, Dauphin PD, Hanan GS. Chem. Commun. 2014; 50: 3303
    • 19b Pal AK, Hanan GS. Dalton Trans. 2014; 43: 6567
  • 20 Joule JA, Mills K In Heterocyclic Chemistry . Wiley-Blackwell; Oxford: 2013
  • 21 Sooväli L, Kaljurand I, Kütt A, Leito I. Anal. Chim. Acta 2006; 566: 290
  • 22 General Procedure In a typical procedure, for mono-hpp substitution reactions, a 100 mL oven-dried round-bottomed flask was charged with (±)-BINAP (3 mol% with respect to N-haloheterocycle) and dissolved in dry toluene (5 mL) under an inert N2 atmosphere at ca. 60 °C to give a clear colorless solution. To this solution was added Pd(OAc)2 (2 mol% with respect to the halogenated N-heterocycle), and the reaction mixture was stirred at ambient temperature under N2 atmosphere to give a clear dark red solution. To this solution was added the halogenated N-heterocycle (1 mmol), and the reaction was heated to 60 °C under N2 atmosphere for 15–20 min, with a concomitant color change from dark-red to yellow. To the resulting clear yellow solution was added H-hpp (1.1 equiv with respect to starting halogenated N-heterocycle), followed by the addition of KOt-Bu (2.5 equiv with respect to halogenated N-heterocycle), and the resulting brownish-red solution was heated at elevated temperature and for the time indicated in Table 1. After this time, the reaction mixture was cooled to r.t., and the solvent was evaporated to dryness. To the resulting brownish-green solid was added an aliquot of a mixture of toluene and Et2O (10:60, v/v), and the mixture was filtered. The pale-yellow filtrate was evaporated to dryness. The desired product was isolated as colorless or yellow solid by tri­turation with acetone (1–2 mL). Subsequent drying under vacuum afforded the compound in the yield as indicated in Table 1.
  • 23 Except for compounds 4 and 713, all of the C–N coupled products are known compounds.11–14 The yields reported in Table 1 for existing compounds were found to be similar to those of the literature reports, and their characterization data were found to be in good agreement to those mentioned in the literature reports.
  • 24 1-(6-Bromopyridin-2-yl)-2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidine (4) White solid. 1H NMR (400 MHz, CDCl3): δ = 7.68 (d, J = 8.0 Hz, 1 H), 7.28 (t, J = 8.0 Hz, 1 H), 6.88 (d, J = 7.2 Hz, 1 H), 3.86 (t, J = 6.0 Hz, 2 H), 3.39 (t, J = 4.8 Hz, 2 H), 3.22 (m, 4 H), 2.0 (quin, J = 6.0 Hz, 2 H), 1.87 (quin, J = 6.0 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 158.05, 148.91, 140.69, 137.76, 119.21, 115.78, 48.46, 48.30, 43.58, 43.07, 23.03, 22.32 ppm. ESI-HRMS (CHCl3): m/z [M + H]+ calcd for C12H15N4Br: 295.0558; found: 295.0631.
  • 25 1-(6-Methylpyridin-2-yl)-2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidine (7) White solid. 1H NMR (400 MHz, CDCl3): δ = 7.28 (d, J = 5.6 Hz, 1 H), 7.24 (d, J = 8.0 Hz, 1 H), 6.53 (d, J = 7.2 Hz, 1 H), 3.75 (t, J = 6.0 Hz, 2 H), 3.27 (t, J = 5.6 Hz, 2 H), 3.10 (m, 4 H), 2.29 (s, 3 H), 1.89 (quin, J = 6.0 Hz, 2 H), 1.76 (quin, J = 6.0 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 155.45, 155.35, 149.51, 135.75, 115.68, 115.16, 48.16, 47.95, 43.24, 43.07, 23.85, 22.98, 22.07 ppm. ESI-HRMS (CHCl3): m/z [M + H]+ calcd for C13H18N4: 231.1610; found: 231.1671.
  • 26 1-(6-Methoxypyridin-2-yl)-2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidine (8) Yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.44 (t, J = 8.0 Hz, 1 H), 7.27 (m, 1 H), 6.24 (dd, J = 12.0 Hz, 1 H), 3.92 (t, J = 6.0 Hz, 2 H), 3.85 (s, 3 H), 3.45 (t, J = 5.6 Hz, 2 H), 3.26 (m, 4 H), 2.04 (quin, J = 6.0 Hz, 2 H), 1.92 (quin, J = 6.0 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 162.27, 154.04, 149.67, 138.61, 109.14, 100.96, 52.86, 48.26, 48.17, 43.23, 43.05, 23.15, 22.18 ppm. ESI-HRMS (CHCl3): m/z [M + H]+ calcd for C13H18N4O: 247.1559; found: 247.1632.
  • 27 1-(5-Methoxypyridin-2-yl)-2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidine (9) White solid. 1H NMR (400 MHz, CDCl3): δ = 7.93 (d, J = 2.8 Hz, 1 H), 7.46 (d, J = 9.2 Hz, 1 H), 7.12 (dd, J = 12.0 Hz, 1 H), 3.76 (s, 3 H), 3.72 (t, J = 6.0 Hz, 2 H), 3.32 (t, J = 5.6 Hz, 2 H), 3.19 (m, 2 H), 2.03 (quin, J = 6.0 Hz, 2 H), 1.85 (quin, J = 6.0 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 151.54, 150.39, 150.20, 132.90, 122.82, 120.71, 55.81, 48.55, 48.33, 44.68, 43.37, 23.22, 22.44 ppm. ESI-HRMS (CHCl3): m/z [M + H]+ calcd for C13H18N4O: 247.1559; found: 247.1631.
  • 28 1-(3-Methoxypyridin-2-yl)-2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidine (10) White solid. 1H NMR (400 MHz, CD3CN): δ = 7.93 (d, J = 3.0 Hz, 1 H), 7.33 (d, J = 9.0 Hz, 1 H), 7.17 (dd, J = 12.0 Hz, 1 H), 3.79 (s, 3 H), 3.50 (t, J = 6.0 Hz, 2 H), 3.24 (m, 6 H), 2.06 (quin, J = 6.0 Hz, 2 H), 1.83 (quin, J = 6.0 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 152.89, 150.62, 150.15, 139.84, 119.95, 118.48, 56.0, 48.28, 48.19, 46.76, 45.9, 24.52, 22.91 ppm. ESI-HRMS (CHCl3): m/z [M + H]+ calcd for C13H18N4O: 247.1559; found: 247.1635.
  • 29 1-(5-Nitropyridin-2-yl)-2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidine (11) Yellow solid. 1H NMR (400 MHz, CDCl3): δ = 9.02 (d, J = 4.0 Hz, 1 H), 8.13 (dd, J = 12.0 Hz, 1 H), 7.86 (d, J = 10.0 Hz, 1 H), 4.01 (t, J = 6.0 Hz, 2 H), 3.44 (t, J = 6.0 Hz, 2 H), 3.25 (m, 4 H), 2.01 (quin, J = 6.0 Hz, 2 H), 1.90 (quin, J = 6.0 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 159.0, 148.34, 144.28, 137.10, 130.70, 114.68, 48.19, 48.14, 43.46, 42.95, 23.29, 21.93 ppm. ESI-HRMS (CHCl3): m/z [M + H]+ calcd for C12H15N5O2: 262.1304; found: 260.1348.
  • 30 1-[6-(2,3,4,6,7,8-Hexahydro-1H-pyrimido[1,2-a]pyrimidin-1-yl)pyridin-3-yl]ethanone (12) White solid. 1H NMR (400 MHz, CDCl3): δ = 8.76 (dd, J = 2.4 Hz, 1H), 7.96 (dd, J = 8.8 Hz, 1 H), 7.75 (dd, J = 8.8 Hz, 1 H), 3.97 (t, J = 5.6 Hz, 2 H), 3.42 (t, J = 6.0 Hz, 2 H), 3.24 (m, 4 H), 2.47 (s, 3 H), 2.01 (quin, J = 6.0 Hz, 2 H), 1.89 (quin, J = 6.0 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 195.74, 158.58, 148.87, 135.23, 115.54, 48.28, 48.19, 43.37, 42.89, 26.09, 23.34, 22.08 ppm. ESI-HRMS (CHCl3): m/z [M + H]+ calcd for C14H18N4O: 259.1559; found: 259.1614.
  • 31 6-{2,3,4,6,7,8-Hexahydro-1H-pyrimido[1,2-a]pyrimidin-1-yl}nicotinic Acid (13) White solid. 1H NMR (400 MHz, CDCl3): δ = 8.82 (dd, J = 2.0 Hz, 1 H), 8.14 (dd, J = 8.0 Hz, 1 H), 7.01 (dd, J = 6.4 Hz, 1 H), 3.77 (t, J = 6.0 Hz, 2 H), 3.39 (t, J = 6.0 Hz, 2 H), 3.31 (m, 4 H), 2.01 (quin, J = 6.0 Hz, 2 H), 1.89 (quin, J = 6.0 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 170.43, 154.8, 150.2, 149.20, 139.13, 124.05, 116.23, 48.08, 47.76, 45.41, 40.12, 21.80, 20.47 ppm. ESI-HRMS (CHCl3): m/z [M + H]+ calcd for C13H16N4O2: 261.1352; found: 261.1420.