Synlett 2015; 26(10): 1345-1347
DOI: 10.1055/s-0034-1380683
letter
© Georg Thieme Verlag Stuttgart · New York

Increased SBA-15-SO3H Catalytic Activity through Hydrophilic/Hydrophobic Fluoroalkyl-Chained Alcohols (RFOH/SBA-15–Pr-SO3H)

Sadegh Rostamnia*
a   Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran   Fax: +98(421)2274893   Email: rostamnia@maragheh.ac.ir   Email: srostamnia@gmail.com
,
Esmail Doustkhah
b   Young Researchers and Elite Club, Maragheh Branch, Islamic Azad University, Maragheh, Iran
› Author Affiliations
Further Information

Publication History

Received: 10 March 2015

Accepted after revision: 03 April 2015

Publication Date:
11 May 2015 (online)


Abstract

A superior catalytic activity for the SBA-15-functionalized sulfonic acid containing fluoroalkyl chain alcohols (RFOH/SBA-15–Pr-SO3H adduct) is presented for the synthesis of highly substituted imidazoles. The advantages of this method include low catalyst loading, simple procedure, excellent yields, recyclability of catalyst, and short reaction times.

 
  • References

  • 1 Nakajima K, Hara M. ACS Catal. 2012; 2: 1296
  • 2 Rostamnia S, Hassankhani A, Hossieni HG, Gholipour B, Xin H. J. Mol. Catal. A: Chem. 2014; 395: 463
  • 3 Sadegh R, Asadollah H. Synlett 2014; 25: 2753
  • 4 Rostamnia S, Hassankhani A. Supramol. Chem. 2014; 26: 736
  • 5 Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Nature (London, U.K.) 1992; 359: 710
  • 6 Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD. Nature (London, U.K.) 1998; 396: 152
  • 7 Lebeau B, Galarneau A, Linden M. Chem. Soc. Rev. 2013; 42: 3661
  • 8 Rostamnia S, Doustkhah E. RSC Adv. 2014; 4: 28238
  • 9 Rostamnia S, Doustkhah E. Functionalized Porous Nanoreactors in Organic Reactions: Mesoporous Solid Support as a Nanocatalyst. LAP LAMBERT Academic Publishing; Saarbrücken: 2013
  • 10 Van Rhijn WM, De Vos DE, Sels BF, Bossaert WD. Chem. Commun. 1998; 317
  • 11 Lim MH, Blanford CF, Stein A. Chem. Mater. 1998; 10: 467
  • 12 Melero JA, Bautista LF, Iglesias J, Morales G, Sánchez-Vázquez R, Wilson K, Lee AF. Appl. Catal. A 2014; 488: 111
  • 13 Dacquin J.-P, Cross HE, Brown DR, Duren T, Williams JJ, Lee AF, Wilson K. Green Chem. 2010; 12: 1383
  • 14 Karimi B, Vafaeezadeh M. Chem. Commun. 2012; 48: 3327
  • 15 Pirez C, Lee AF, Jones C, Wilson K. Catal. Today 2014; 234: 167
  • 16 Karimi B, Zareyee D. Org. Lett. 2008; 10: 3989
  • 17 Karimi B, Vafaeezadeh M. RSC Adv. 2013; 3: 23207
  • 18 Karimi B, Mirzaei HM. RSC Adv. 2013; 3: 20655
  • 19 Li C, Yang J, Shi X, Liu J, Yang Q. Microporous Mesoporous Mater. 2007; 98: 220
  • 20 Tucker MH, Crisci AJ, Wigington BN, Phadke N, Alamillo R, Zhang J, Scott SL, Dumesic JA. ACS Catal. 2012; 2: 1865
  • 21 Jeong H.-J, Kim D.-K, Lee S.-B, Kwon S.-H, Kadono K. J. Colloid and Interface Sci. 2001; 235: 130
  • 22 Qiu ZM. WO 2002072537 A2, 2003
  • 23 Ghaffarzadeh M, Ahmadi M. J. Fluorine Chem. 2014; 160: 77
  • 24 Rostamnia S, Zabardasti A. J. Fluorine Chem. 2012; 144: 69
  • 25 Rostamnia S, Doustkhah E, Nuri A. J. Fluorine Chem. 2013; 153: 1
  • 26 Rostamnia S, Doustkhah E. Tetrahedron Lett. 2014; 55: 2508
  • 27 Laufer SA, Zimmermann W, Ruff KJ. J. Med. Chem. 2004; 47: 6311
  • 28 Guo C, Zhang C, Li X, Li W, Xu Z, Bao L, Ding Y, Wang L, Li S. Bioorg. Med. Chem. Lett. 2013; 23: 5850
  • 29 Wang X.-Q, Liu L.-X, Li Y, Sun C.-J, Chen W, Li L, Zhang H.-B, Yang X.-D. Eur. J. Med. Chem. 2013; 62: 111
  • 30 Chen W, Deng X.-Y, Li Y, Yang L.-J, Wan W.-C, Wang X.-Q, Zhang H.-B, Yang X.-D. Bioorg. Med. Chem. Lett. 2013; 23: 4297
  • 31 Fallah NS, Mokhtary M. Journal of Taibah University for Science 2015; 9 in press: doi: 10.1016/j.jtusci.2014.12.004
  • 32 Mirjalili BF, Bamoniri A, Mirhoseini MA. Scientia Iranica 2013; 20: 587
  • 33 Kannan V, Sreekumar K. J. Mol. Catal. A: Chem. 2013; 376: 34
  • 34 Samai S, Nandi GC, Singh P, Singh MS. Tetrahedron 2009; 65: 10155
  • 35 Sharma GV. M, Jyothi Y, Lakshmi PS. Synth. Commun. 2006; 36: 2991
  • 36 Rostamnia S, Xin H, Liu X, Lamei K. J. Mol. Catal. A: Chem. 2013; 374–375: 85
  • 37 Rostamnia S, Xin H. J. Mol. Liq. 2014; 195: 30
  • 38 Rostamnia S, Pourhassan F. Chin. Chem. Lett. 2013; 24: 401
  • 39 Kantevari S, Vuppalapati SV. N, Biradar DO, Nagarapu L. J. Mol. Catal. A: Chem. 2007; 266: 109
  • 40 Karimi A, Alimohammadi Z, Amini M. Mol. Diversity 2010; 14: 635
  • 41 Pandit S, Bhalerao S, Aher U, Adhav G, Pandit VJ. Chem. Sci. 2011; 123: 421
  • 42 Heravi MM, Zakeri M, Karimi N, Saeedi M, Oskooie HA, Tavakoli-Hosieni N. Synth. Commun. 2010; 40: 1998
  • 43 General Procedure for the Synthesis of Imidazoles To a mixture of diphenylglyoxal (1 mmol), aldehyde (1 mmol), amine (1 mmol), and NH4OAc (1.2 mmol) were added TFE/SBA-15–Pr-SO3H (0.035 g) and heated to 70 °C until reaction was judged to be complete by TLC. The catalyst was separated by centrifugation and washed with TFE. The organic product was recrystallized from EtOH. The catalyst was collected and could be reused. For synthesis of trisubstituted imidazoles, reagents diphenylglyoxal (1 mmol), aldehyde (1 mmol), and NH4OAc (2.2 mmol) were reacted under the same conditions. All the products were characterized by comparing physical and spectroscopic data with those previously reported in the literature.