Synlett 2015; 26(15): 2088-2098
DOI: 10.1055/s-0034-1381031
account
© Georg Thieme Verlag Stuttgart · New York

Advances in Transition-Metal-Catalyzed Direct sp3-Carbon–Hydrogen Bond Functionalization

Wei Zhang
a   Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China   Email: nxwang@mail.ipc.ac.cn
,
Nai-Xing Wang*
a   Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China   Email: nxwang@mail.ipc.ac.cn
,
Yalan Xing*
b   Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Road, Wayne NJ 07470, USA   Email: xingy@wpunj.edu
› Author Affiliations
Further Information

Publication History

Received: 27 March 2015

Accepted after revision: 26 May 2015

Publication Date:
21 August 2015 (online)


Abstract

Transition-metal-catalyzed direct carbon–hydrogen bond functionalization has made significant advances in the field of carbon–hydrogen bond activation over the past decades. This methodology has the potential to be used in many different areas of chemistry; for example, it can provide an opportunity for the synthesis of various kinds of complex compounds. This account mainly focuses on recent advances in transition-metal-catalyzed direct sp3-carbon–hydrogen bond functionalization to form carbon–carbon bonds.

1 Introduction

2 Carbon–Carbon Bond Formation via Direct sp3-Carbon–Hydrogen Bond Functionalization

2.1 Coupling of sp3-Carbon–Hydrogen and sp-Carbon–Hydrogen Bonds

2.2 Coupling of sp3-Carbon–Hydrogen and sp2-Carbon–Hydrogen Bonds

2.3 Coupling of sp3-Carbon–Hydrogen and sp3-Carbon–Hydrogen Bonds

2.4 Coupling of sp3-Carbon–Hydrogen and C–X Bonds

3 Conclusion

 
  • References


    • For selected examples, see:
    • 1a Ackermann L, Vicente R, Kapdi A. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 1b Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 1c Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 1d Deng Y, Persson A, Backvall J.-E. Chem. Eur. J. 2012; 18: 11498
    • 1e Song W, Kozhushkov S, Achermann L. Angew. Chem. Int. Ed. 2013; 52: 6576
    • 1f Ackermann L. Chem. Rev. 2011; 111: 1315
    • 1g Ackermann L. Acc. Chem. Res. 2014; 47: 281
    • 1h Arnold PL, McMullon MW, Rieb J, Kuhn FE. Angew. Chem. Int. Ed. 2015; 54: 82
    • 1i Chen DY, Youn SW. Chem. Eur. J. 2012; 18: 9452
    • 1j Chu X.-Q, Meng H, Zi Y, Xu X.-P, Ji S.-J. Org. Chem. Front. 2015; 2: 216
    • 1k Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 1l Colby DA, Tsai AS, Bergman RG, Ellman JA. Acc. Chem. Res. 2012; 45: 814
    • 1m Shang X, Liu ZQ. Chem. Soc. Rev. 2013; 42: 3253
    • 1n Zhang SY, Zhang FM, Tu YQ. Chem. Soc. Rev. 2011; 40: 1937
    • 2a Gaich T, Baran PS. J. Org. Chem. 2010; 75: 4657
    • 2b Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
    • 3a Daugulis O, Do H.-Q, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 3b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 3c Li B.-J, Shi Z.-J. Chem. Soc. Rev. 2012; 41: 5588
    • 3d See also ref. 3d.
    • 3e Louillat M.-L, Patureau FW. Chem. Rev. 2014; 43: 901
    • 3f Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
  • 4 Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 5a Kozhushkov SI, Ackermann L. Chem. Sci. 2013; 4: 886
    • 5b See also ref. 5m.
    • 5c Patureau FW, Wencel-Delord J, Glorius F. Aldrichimica Acta 2012; 45: 31
    • 5d Hirano K, Miura M. Chem. Commun. 2012; 48: 10704
    • 5e Yang L, Huang H. Catal. Sci. Technol. 2012; 2: 1099
    • 5f Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
    • 5g Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 5h See also ref. 1c.
    • 5i Klussmann M, Sureshkumar D. Synthesis 2011; 353
    • 5j Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
    • 5k Li C.-J, Li Z. Pure Appl. Chem. 2006; 78: 935
    • 5l Sarhan AA. O, Bolm C. Chem. Soc. Rev. 2009; 38: 2730
    • 5m Scheuermann CJ. Chem. Asian J. 2010; 5: 436
    • 5n Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540
  • 6 Li Z, Li C.-J. J. Am. Chem. Soc. 2004; 126: 11810
    • 7a Li Z, Li C.-J. Org. Lett. 2004; 6: 4997
    • 7b Li Z, MacLeod PD, Li C.-J. Tetrahedron: Asymmetry 2006; 17: 590
  • 8 Su W, Yu J, Li Z, Jiang Z. J. Org. Chem. 2011; 76: 9144
  • 9 Yu J, Li Z, Jia K, Jiang Z, Liu M, Su W. Tetrahedron Lett. 2013; 54: 2006
  • 10 Zhao L, Li C.-J. Angew. Chem. Int. Ed. 2008; 47: 7075
  • 11 Correia CA, Li C.-J. Heterocycles 2010; 82: 555
  • 12 Correia CA, Li C.-J. Adv. Synth. Catal. 2010; 352: 1446
  • 13 Sugiishi T, Nakamura H. J. Am. Chem. Soc. 2012; 134: 2504
  • 14 Ma Y, Zhang S, Yang S, Song F, You J. Angew. Chem. Int. Ed. 2014; 53: 7870
  • 15 Nakai K, Yoshida Y, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2014; 136: 7797
  • 16 Kim S, Hong SH. Adv. Synth. Catal. 2015; 357: 1004
  • 17 Liang T, Nguyen KD, Zhang W, Krische MJ. J. Am. Chem. Soc. 2015; 137: 3161
  • 18 Moran-Poladura P, Rubio E, Gonzalez JM. Angew. Chem. Int. Ed. 2015; 54: 3052
  • 19 Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 6968
  • 20 Deng G, Zhao L, Li C.-J. Angew. Chem. Int. Ed. 2008; 47: 6278
  • 21 Guo X, Li C.-J. Org. Lett. 2011; 13: 4977
  • 22 Deboef B, Pastine SJ, Sames D. J. Am. Chem. Soc. 2004; 126: 6556
    • 23a Li B, Fagnou K. Organometallics 2008; 27: 4841
    • 23b Wasa M, Engle KM, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 3680
    • 23c Stowers KJ, Fortner KC, Sanford MS. J. Am. Chem. Soc. 2011; 133: 6541
  • 24 Wu T, Mu X, Liu G. Angew. Chem. Int. Ed. 2011; 50: 12578
  • 25 Yip K.-T, Nimje RY, Leskinen MV, Pihko PM. Chem. Eur. J. 2012; 18: 12590
  • 26 Zhu W, Zhang D, Yang N, Liu H. Chem. Commun. 2014; 50: 10634
  • 27 Aihara Y, Tobisu M, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2014; 136: 15509
  • 28 Zhang JX, Wang YJ, Zhang W, Wang NX, Bai CB, Xing YL, Li YH, Wen JL. Sci. Rep. 2014; 4: 7446
  • 29 Zhang JX, Wang YJ, Wang NX, Zhang W, Bai CB, Li YH, Wen JL. Synlett 2014; 25: 1621
  • 30 Cheng JK, Loh TP. J. Am. Chem. Soc. 2015; 137: 42
  • 31 Guo S, Li Y, Wang Y, Guo X, Meng X, Chen B. Adv. Synth. Catal. 2015; 357: 950
  • 32 Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 3672
  • 33 Basl O, Li C.-J. Green Chem. 2007; 9: 1047
    • 34a Ishii Y, Sakaguchi S, Iwahama T. Adv. Synth. Catal. 2001; 343: 393
    • 34b Galli C, Gentili P, Lanzalunga O. Angew. Chem. Int. Ed. 2008; 47: 4790
  • 35 Zhang Y, Li C.-J. Eur. J. Org. Chem. 2007; 4654
  • 36 Mao S, Gao Y.-R, Zhang S.-L, Guo D.-D, Wang Y.-Q. Eur. J. Org. Chem. 2015; 876
  • 37 Yang K, Song Q. Org. Lett. 2015; 17: 548
  • 38 Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
  • 39 Wei Y, Tang H, Cong X, Rao B, Wu C, Zeng X. Org. Lett. 2014; 16: 2248
  • 40 Feng Y, Wang Y, Landgraf B, Liu S, Chen G. Org. Lett. 2010; 12: 3414
  • 41 Huang Z, Dong G. J. Am. Chem. Soc. 2013; 135: 17747
  • 42 Zhang SY, Li Q, He G, Nack WA, Chen G. J. Am. Chem. Soc. 2013; 135: 12135
  • 43 Zhu RY, He J, Wang XC, Yu JQ. J. Am. Chem. Soc. 2014; 136: 13194
  • 44 Chan KS. L, Wasa M, Chu L, Laforteza BN, Miura M, Yu J.-Q. Nat. Chem. 2014; 146
  • 45 He J, Li S, Deng Y, Fu H, Laforteza BN, Spangler JE, Homs A, Yu JQ. Science 2014; 343: 1216
  • 46 Guo L, Ma X, Fang H, Jia X, Huang Z. Angew. Chem. Int. Ed. 2015; 54: 4023
  • 47 Yang W, Ye S, Fanning D, Coon T, Schmidt Y, Krenitsky P, Stamos D, Yu JQ. Angew. Chem. Int. Ed. 2015; 54: 2501