Der Klinikarzt 2014; 43(6): 302-307
DOI: 10.1055/s-0034-1384303
Schwerpunkt
© Georg Thieme Verlag Stuttgart · New York

Beatmung bei Sepsis – Standards und Innovationen

Ventilation during sepsis – Standards and innovations in lung-protective ventilation therapy
Philipp Klapsing
1   Klinik für Anästhesiologie, Zentrum Anästhesiologie, Rettungs- und Intensivmedizin, Universitätsmedizin Göttingen, Göttingen
,
Onnen Moerer
1   Klinik für Anästhesiologie, Zentrum Anästhesiologie, Rettungs- und Intensivmedizin, Universitätsmedizin Göttingen, Göttingen
› Author Affiliations
Further Information

Publication History

Publication Date:
18 June 2014 (online)

Der modernen lungenprotektiven Beatmungstherapie im Rahmen der Sepsis kommt eine entscheidende Rolle für die intensivmedizinische Behandlung schwerstkranker Patienten zu. In Studien konnte gezeigt werden, dass eine lungenprotektive Beatmungsstrategie eine Reduktion der Mortalität und Morbidität in allen Patientengruppen bewirkt. Im Gegenzug konnte in experimentellen und klinischen Studien ein starker Einfluss nicht-protektiver Beatmungsstrategien (Volutrauma, Atelektrauma) auf die Freisetzung inflammatorischer Zytokine in die systemische Zirkulation mit entsprechender Morbidität und Mortalität nachgewiesen werden (Biotrauma). Ziel einer lungenprotektiven Beatmung im Rahmen der Sepsis ist es daher, die negativen Folgen mechanischer Beatmung im Sinne eines ventilator-induzierten Lungenschadens (VILI) und eines Multiorganversagens (MOF) zu verhindern.

Wir stellen in dieser Übersicht pathophysiologische Konzepte und Konsequenzen beatmungsinduzierter Lungenschädigung und etablierte Verfahren und Innovationen der lungenprotektiven Beatmung bei Sepsis vor.

Modern lung-protective mechanical ventilation during sepsis holds a pivotal role during intensive medical care of severely ill patients.

Scientific studies have demonstrated a reduction of mortality and morbidity by application of lung protective ventilation strategies across all patient groups. On the other hand, it has clearly been shown both in experimental and clinical studies that non-protective ventilatory settings (volutrauma, atelectrauma) result in the release of inflammatory cytokines into the systemic circulation (biotrauma) with resultant morbidity and mortality. Lung-protective ventilation during sepsis allows a reduction of the negative implications of mechanical ventilation including ventilator-induced lung injury (VILI) and multiple organ failure (MOF). In this article, we review the pathophysiology and consequences of ventilator induced lung injury and present established and emerging innovative concepts of lung-protective ventilation during sepsis.

 
  • Literatur

  • 1 Serpa Neto A, Cardoso S, Manetta J et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: A meta-analysis. JAMA 2012; 308: 1651-1659
  • 2 Fein AM, Lippmann M, Holtzman H et al. The risk factors, incidence, and prognosis of ARDS following septicemia. Chest 1983; 83: 40-42
  • 3 Slutsky AS, Ranieri VM. Ventilator-Induced Lung Injury. New England Journal of Medicine 2013; 369: 2126-2136
  • 4 Fontanarosa PB, Ranieri VM, Giunta F et al. Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA 2000; 284: 43-44
  • 5 Villar J, Blanco J, Zhang H, Slutsky AS. Ventilator-induced lung injury and sepsis: two sides of the same coin?. Minerva anestesiologica 2011; 77: 647-653
  • 6 Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. New Engl J Med 2000; 342: 1301-1308
  • 7 O'Croinin D, Ni Chonghaile M, Higgins B, Laffey J. Bench-to-bedside review: Permissive hypercapnia. Critical Care 2005; 9: 51-59
  • 8 Dellinger RP, Levy M, Rhodes A et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012. Intensive Care Medicine 2013; 39: 165-228
  • 9 Martin-Loeches I, de Haro C, Dellinger RP et al. Effectiveness of an inspiratory pressure-limited approach to mechanical ventilation in septic patients. European Respiratory Journal 2013; 41: 157-164
  • 10 Fernandez-Mondejar E, Chavero MJ, Machado J. Prophylactic positive end-expiratory pressure: are good intentions enough?. Critical care 2003; 7: 191-191
  • 11 Briel M, Meade M, Mercat A et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: Systematic review and meta-analysis. JAMA 2010; 303: 865-873
  • 12 Chiumello D, Cressoni M, Carlesso E et al. Bedside Selection of Positive End-Expiratory Pressure in Mild, Moderate, and Severe Acute Respiratory Distress Syndrome*. Critical Care Medicine 2014; 42: 252-264
  • 13 Moerer O. Effort-adapted modes of assisted breathing. Current Opinion in Critical Care 2012; 18: 61-69
  • 14 Karagiannidis C, Moerer O. Neue Beatmungsformen. DIVI 2012;
  • 15 Lachmann B. Open up the lung and keep the lung open. Intensive Care Medicine 1992; 18: 319-321
  • 16 Guérin C, Reignier J, Richard J-C et al. Prone Positioning in Severe Acute Respiratory Distress Syndrome. New Engl J Med 2013; 368: 2159-2168
  • 17 Drakulovic MB, Torres A, Bauer TT et al. Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Lancet 1999; 354: 1851-1858
  • 18 Schönhofer B, Geiseler J, Dellweg D et al. Prolongiertes Weaning. Pneumologie 2014; 68: 19-75
  • 19 Thille AW, Contou D, Fragnoli C et al. Non-invasive ventilation for acute hypoxemic respiratory failure: intubation rate and risk factors. Critical Care 2013; 17
  • 20 Talmor D, Sarge T, Malhotra A et al. Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury. New Engl J Med 2008; 359: 2095-2104
  • 21 Nuckton TJ, Alonso JA, Kallet RH et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. New Engl J Med 2002; 346: 1281-1286
  • 22 Ferguson N, Cook D, Guyatt G et al. High-frequency oscillation in early acute respiratory distress syndrome. New Engl J Med 2013; 368: 795-805
  • 23 Neamu RF, Martin GS. Fluid management in acute respiratory distress syndrome. Current Opinion in Critical Care 2013; 19: 24-30
  • 24 Kushimoto S, Taira Y, Kitazawa Y et al. The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute respiratory distress syndrome. Critical Care 2012; 16