Aktuelle Neurologie 2014; 41(07): 409-414
DOI: 10.1055/s-0034-1387242
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Sensitivität und Spezifität bildgebender Verfahren für den Nachweis intrakranieller Aneurysmen

Sensitivity and Specifity of Different Imaging Methods for the Detection of Cerebral Aneurysms
A. Ringelstein
Universitätsklinikum Essen, Institut für Diagnostische und Interventionelle Radiologie und Neuroradiologie
,
M. Forsting
Universitätsklinikum Essen, Institut für Diagnostische und Interventionelle Radiologie und Neuroradiologie
› Author Affiliations
Further Information

Publication History

Publication Date:
01 September 2014 (online)

Zusammenfassung

Aneurysmen der intrakraniellen Arterien treten mit einer Prävalenz von etwa 2 % auf. Die Rupturwahrscheinlichkeit beerenförmiger Aneurysmen liegt bei etwa 0,1 %/Jahr.

Die Letalität innerhalb von 30 Tagen nach der Ruptur eines zerebralen Aneurysmas wird auf 45 % geschätzt; zusätzlich behält die Hälfte der überlebenden Patienten schwere neurologische Defizite. Der rechtszeitige Nachweis und die prophylaktische Therapie eines Aneurysmas ist die zuverlässigste Methode, eine Ruptur zu vermeiden. Insofern ist es relevant, das Potenzial der aktuellen bildgebenden Verfahren zu kennen, anwenden zu können und an Verbesserungen der verschiedenen Verfahren teilzunehmen.

Diese Arbeit stellt das diagnostische Potenzial der CT, MRT und Katheterangiografie zur Detektion, Therapieplanung und Nachsorge von Aneurysmen dar und leitet daraus eine Handlungsempfehlung ab.

Abstract

The prevalence or cerebral aneurysms is estimated at 2 %. Out of these aciniform aneurysm, 0.1 % rupture each year. The 30-day-mortality after a subarachnoid hemorrhage (SAH) is estimated at 45 %. Additionally, about 50 % of the patients suffer from severe persistent neurologic deficits.

The most reliable way to prevent rupture is early detection and prophylactic therapy of an unruptured aneurysm. For this, knowledge of the different imaging methods currently available and their diagnostic potential is highly desirable.

This review describes the potential of CT, MRI and catheter angiography in diagnosing cerebral aneurysms, as well as therapy planning and follow-up care of patients. Based on this, some recommendations are made for management of patients with SAH.

 
  • Literatur

  • 1 Brown RD. Unruptured intracranial aneurysms. Semin Neurol 2010; 30: 537-544
  • 2 Wardlaw JM, White PM. The detection and management of unruptured intracranial aneurysms. Brain 2000; 123: 205-221
  • 3 Graves EJ. Detailed diagnoses and procedures, national hospital discharge survey,1990. Vital Health Stat 13 1992; 113: 1-225
  • 4 Anxionnat R, Bracard S, Ducrocq X et al. Intracranial aneurysms: clinical value of 3D digital subtraction angiography in the therapeutic decision and endovascular treatment. Radiology 2001; 218: 799-808
  • 5 van Rooij WJ, Sprengers ME, de Gast AN et al. 3D rotational angiography: the new gold standard in the detection of additional intracranial aneurysms. AJNR Am J Neuroradiol 2008; 29: 976-979
  • 6 Westerlaan HE, van Dijk JM, van Dijk MJ et al. Intracranial aneurysms in patients with subarachnoid hemorrhage: CT angiography as a primary examination tool for diagnosis–systematic review and meta-analysis. Radiology 2011; 258: 134-145
  • 7 Menke J, Larsen J, Kallenberg K. Diagnosing cerebral aneurysms by computed tomographic angiography: meta-analysis. Ann Neurol 2011; 69: 646-654
  • 8 Sailer A, Wagemans A, Nelemans PJ et al. Diagnosing intracranial aneurysms with mr angiography: systematic review and meta-analysis. Stroke 2014; 45: 119-126
  • 9 Bederson JB, Connolly Jr ES, Batjer HH et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 2009; 40: 994-1025
  • 10 Lu L, Zhang LJ, Poon CS et al. Digital subtraction CT angiography for detection of intracranial aneurysms: comparison with three-dimensional digital subtraction angiography. Radiology 2012; 262: 605-612
  • 11 Ringelstein A, Mueller O, Mönninghoff C et al. 3D rotational angiography after non-traumatic SAH. Rofo 2014; 186: 675-679
  • 12 Davis B, Royalty K, Kowarschik M et al. 4D digital subtraction angiography: implementation and demonstration of feasibility. AJNR Am J Neuroradiol 2013; 34: 1914-1921
  • 13 Hahnemann ML, Ringelstein A, Sandalcioglu IE et al. Silent embolism after stent-assisted coiling of cerebral aneurysms: diffusion-weighted MRI study of 75 cases. J Neurointerv Surg 2014; 6: 461-465
  • 14 Manninen AL, Isokangas JM, Karttunen A et al. A comparison of radiation exposure between diagnostic CTA and DSA examinations of cerebral and cervicocerebral vessels. AJNR Am J Neuroradiol 2012; 33: 2038-2042
  • 15 Hoh BL, Cheung AC, Rabinov JD et al. Results of a prospective protocol of computed tomographic angiography in place of catheter angiography as the only diagnostic and pretreatment planning study for cerebral aneurysms by a combined neurovascular team. Neurosurgery 2004; 54: 1329-1340
  • 16 Hsiang JN, Liang EY, Lam JM et al. The role of computed tomographic angiography in the diagnosis of intracranial aneurysms and emergent aneurysm clipping. Neurosurgery 1996; 38: 481-487
  • 17 McKinney AM, Palmer CS, Truwit CL et al. Detection of aneurysms by 64-section multidetector CT angiography in patients acutely suspected of having an intracranial aneurysm and comparison with digital subtraction and 3D rotational angiography. AJNR Am J Neuroradiol 2008; 29: 594-602
  • 18 Chen W, Wang J, Xing W et al. Accuracy of 16-row multislice computerized tomography angiography for assessment of intracranial aneurysms. Surg Neurol 2009; 71: 32-42
  • 19 Chen W, Xing W, Peng Y et al. Cerebral aneurysms: accuracy of 320-detector row nonsubtracted and subtracted volumetric CT angiography for diagnosis. Radiology  2013; 269: 841-849
  • 20 Luo Z, Wang D, Sun X et al. Comparison of the accuracy of subtraction CT angiography performed on 320-detector row volume CT with conventional CT angiography for diagnosis of intracranial aneurysms. Eur J Radiol 2012; 81: 118-122
  • 21 Hayashida E, Sasao A, Hirai T et al. Can sufficient preoperative information of intracranial aneurysms be obtained by using 320-row detector CT angiography alone?. Jpn J Radiol 2013; 31: 600-607
  • 22 Chen Y, Navarro L, Wang Y. Segmentation of the thrombus of giant intracranial aneurysms from CT angiography scans with lattice Boltzmann method. Medical Image Analysis 2014; 18: 1-8
  • 23 Mehan Jr WA, Romero JM, Hirsch JA et al. Unruptured intracranial aneurysms conservatively followed with serial CT angiography: could morphology and growth predict rupture?. J NeuroIntervent Surg 2013; 0: 1-6
  • 24 Shinohara Y, Sakamoto M, Iwata N et al. Usefulness of monochromatic imaging with metal artifact reduction software for computed tomography angiography after intracranial aneurysm coil embolization. Acta Radiologica 2013; 0: 1-9
  • 25 Fahrendorf DM, Goericke SL, Oezkan N et al. The value of dual-energy CTA for control of surgically clipped aneurysms. Eur Radiol  2011; 21: 2193-2201
  • 26 White PM, Wardlaw JM, Easton V. Can noninvasive imaging accurately depict intracranial aneurysms? A systematic review. Radiology 2000; 217: 361-370
  • 27 Sailer AMH, Wagemans BAJM, Nelemans PJ et al. Meta-analysis diagnosing intracranial aneurysms with MR Angiography: systematic review and meta-analysis. Stroke 2014; 45: 119-126
  • 28 Pierot L, Portefaix C, Rodriguez-Régent C et al. Role of MRA in the detection of intracranial aneurysm in the acute phase of intracranial hemorrhage. J Neuroradiol 2013; 40: 204-210
  • 29 Cirillo M, Scomazzoni F, Cirillo L et al. Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms. Eur J Radiol 2013; 82: 853-859
  • 30 Li MH, Li YD, Tan HQ et al. Contrast-free MRA at 3.0 T for the detection of intracranial aneurysms. Neurology 2011; 77: 667-676
  • 31 Wrede KH, Dammann P, Mönninghoff C et al. Non-enhanced MR imaging of cerebral aneurysms: 7 Tesla versus 1.5 Tesla. PLoS One  2014; 9: 84562
  • 32 Mallouhi A, Felber S, Chemelli A et al. Detection and characterization of intracranial aneurysms with MR angiography: comparison of volume-rendering and maximum-intensityprojection algorithms. AJR Am J Roentgenol 2003; 180: 55-64
  • 33 White PM, Wardlaw JM, Lindsay KW et al. The non-invasive detection of intracranial aneurysms: are neuroradiologists any better than other observers?. Eur Radiol 2003; 13: 389-396
  • 34 Pedersen HK, Bakke SJ, Hald JK et al. CTA in patients with acute subarachnoid haemorrhage. A comparativ study with selective, digital angiography and blinded, independent review. Acta Radiol 2001; 42: 43-49
  • 35 Sawiris N, Venizelos A, Ouyang B et al. Current utility of diagnostic catheter cerebral angiography. J Stroke and Cerebrovascular Diseases 2014; 23: 145-150
  • 36 Fifi JT, Meyers PM, Lavine SD et al. Complications of modern diagnostic cerebral angiography in an academic medical center. J Vasc Interv Radiol 2009; 20: 442-447
  • 37 Kaufmann TJ, Huston Jr J, Mandrekar JN et al. Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology 2007; 243: 812-819
  • 38 Schaafsma JD, Koffijberg H, Buskens E et al. Cost-effectiveness of magnetic resonance angiography versus intra-arterial digital subtraction angiography to follow up patients with coiled intracranial aneurysms. Stroke 2010; 41: 1736-1742
  • 39 Willems PW, Taeshineetanakul P, Schenk B et al. The use of 4D-CTA in the diagnostic work-up of brain arteriovenous malformations. Neuroradiology 2012; 54: 123-131
  • 40 Prabhakaran S, Warrior L, Wells KR et al. The utility of quantitative magnetic resonance angiography in the assessment of intracranial in-stent stenosis. Stroke 2009; 40: 991-993
  • 41 Westerlaan HE, van Dijk MJ, Jansen-van der Weide MC et al. Intracranial aneurysms in patients with subarachnoid hemorrhage: CT angiography as a primary examination tool for diagnosis — systematic review and meta-analysis. Radiology 2011; 258: 134-145
  • 42 Romijn M, Gratama van Andel HA, van Walderveen MA et al. Diagnostic accuracy of CT angiography with matched mask bone elimination for detection of intracranial aneurysms: comparison with digital subtraction angiography and 3D rotational angiography. AJNR Am J Neuroradiol 2008; 29: 134-139
  • 43 Delgado Almandoz JE, Crandall BM et al. Diagnostic yield of catheter angiography in patients with subarachnoid hemorrhage and negative initial noninvasive neurovascular examinations. AJNR 2013; 34: 833-839
  • 44 van Rooij WJ, Peluso JP, Sluzewski M et al. Additional value of 3D rotational angiography in angiographically negative aneurysmal subarachnoid hemorrhage: how negative is negative?. AJNR Am J Neuroradiol 2008; 29: 962-966
  • 45 Ishihara H, Kato S, Akimura T et al. Angiogram-negative subarachnoid hemorrhage in the era of three dimensional rotational angiography. J Clin Neurosci 2007; 14: 252-255
  • 46 Strother CM, Bender F, Deuerling-Zheng Y et al. Parametric color coding of digital subtraction angiography. AJNR 2010; 31: 919-924
  • 47 Delgado Almandoz JE, Jagadeesan BD, Refai D et al. Diagnostic Yield of Repeat Catheter Angiography in Patients with Catheter- and CT-Angiography-negative Subarachnoid Hemorrhage. Neurosurgery 2012; 70: 1135-1142
  • 48 Topcuoglu MA, Ogilvy CS, Carter BS et al. Subarachnoid hemorrhage without evident cause on initial angiography studies: diagnostic yield of subsequent angiography and other neuroimaging tests. J Neurosurg 2003; 98: 1235-1240
  • 49 Agid R, Andersson T, Almqvist H et al. Negative CT angiography findings in patients with spontaneous subarachnoid hemorrhage: when is digital subtraction angiography still needed?. AJNR 2010; 31: 696-705