Gastroenterologie up2date 2014; 10(04): 263-278
DOI: 10.1055/s-0034-1391094
Leber/Galle/Pankreas
© Georg Thieme Verlag KG Stuttgart · New York

Interventionelle Therapie und stereotaktische Strahlentherapie von Lebermetastasen

Christian Wybranski
,
Sebastian A. Lettmaier
,
Jens Ricke
Further Information

Publication History

Publication Date:
11 December 2014 (online)

Kernaussagen

Interventionell radiologische Verfahren

  • Vorteile der lokalen perkutan-interstitiellen und lokoregionären endovaskulären Ablationsverfahren sind die minimale Invasivität, die weitgehende Vermeidung systemischer Nebenwirkungen, die gute Patiententoleranz und das hohe Sicherheitsprofil.

  • Die Radiofrequenzablation (RFA) ist das am weitesten verbreitete thermische Ablationsverfahren. Sie ist für die Therapie unifokaler Metastasen ≤ 5 cm oder oligofokaler Metastasen ≤ 3,5 cm geeignet.

  • Mittels interstitieller High-Dose-Rate-Brachytherapie können unter weitgehender Schonung des angrenzenden Lebergewebes ausgedehnte unifokale und oligofokale Metastasen behandelt werden.

  • Die selektive interne Radiotherapie (SIRT) vereint die Vorteile der selektiven Tumorembolisation und einer lokalen Radiotherapie und kann auch bei multifokaler bzw. diffuser Metastasierung zum Einsatz kommen.

Stereotaktische Strahlentherapie

  • Die stereotaktische Strahlentherapie von Lebermetastasen ist das einzige nicht invasive Therapieverfahren mit kurativem Potenzial.

  • Bei allen Patienten in ausreichendem Allgemeinzustand mit Oligometastasierung der Leber, die nicht für eine chirurgische Resektion infrage kommen, sollte eine stereotaktische Strahlentherapie erwogen werden.

  • Die hohe Strahlenempfindlichkeit des gesunden Leberparenchyms sowie die starke Atembeweglichkeit der Leber stellen große Herausforderungen für die Strahlentherapie dar.

  • Die stereotaktische Strahlentherapie erreicht mithilfe moderner bildgestützter Verfahren die räumlich präzise Applikation sehr hoher Strahlendosen unter maximaler Normalgewebsschonung.

  • Klinische Daten belegen eine sehr hohe Therapiewirksamkeit der stereotaktischen Bestrahlung bei minimaler Toxizität.

 
  • Literatur

  • 1 Weiss L, Grundmann E, Torhorst J et al. Haematogenous metastatic patterns in colonic carcinoma: an analysis of 1541 necropsies. J Pathol 1986; 150: 195-203
  • 2 Manfredi S, Lepage C, Hatem C et al. Epidemiology and management of liver metastases from colorectal cancer. Ann Surg 2006; 244: 254-259
  • 3 Van Cutsem E, Nordlinger B, Cervantes A. Advanced colorectal cancer: ESMO Clinical Practice Guidelines for treatment. Ann Oncol 2010; 21: v93-97
  • 4 Fong Y, Fortner J, Sun RL et al. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 1999; 230: 309-318
  • 5 Khatri VP, Chee KG, Petrelli NJ. Modern multimodality approach to hepatic colorectal metastases: solutions and controversies. Surg Oncol 2007; 16: 71-83
  • 6 Welsh FK, Tekkis PP, O’Rourke T et al. Quantification of risk of a positive (R1) resection margin following hepatic resection for metastatic colorectal cancer: an aid to clinical decision-making. Surg Oncol 2008; 17: 3-13
  • 7 Lowenthal D, Zeile M, Lim WY et al. Detection and characterisation of focal liver lesions in colorectal carcinoma patients: comparison of diffusion-weighted and Gd-EOB-DTPA enhanced MR imaging. Eur Radiol 2011; 21: 832-840
  • 8 Fischbach F, Thormann M, Seidensticker M et al. Assessment of fast dynamic imaging and the use of Gd-EOB-DTPA for MR-guided liver interventions. J Magn Reson Imaging 2011; 34: 874-879
  • 9 Ricke J, Thormann M, Ludewig M et al. MR-guided liver tumor ablation employing open high-field 1.0T MRI for image-guided brachytherapy. Eur Radiol 2010; 20: 1985-1993
  • 10 Yu MH, Kim JH, Yoon JH et al. Role of C-arm CT for transcatheter arterial chemoembolization of hepatocellular carcinoma: diagnostic performance and predictive value for therapeutic response compared with gadoxetic acid-enhanced MRI. AJR Am J Roentgenol 2013; 201: 675-683
  • 11 Loffroy R, Lin M, Yenokyan G et al. Intraprocedural C-arm dual-phase cone-beam CT: can it be used to predict short-term response to TACE with drug-eluting beads in patients with hepatocellular carcinoma?. Radiology 2013; 266: 636-648
  • 12 Pereira PL, Clasen S, Boss A et al. [Radiofrequency ablation of liver metastases]. Radiologe 2004; 44: 347-357
  • 13 Erce C, Parks RW. Interstitial ablative techniques for hepatic tumours. Br J Surg 2003; 90: 272-289
  • 14 Mulier S, Ni Y, Jamart J et al. Local recurrence after hepatic radiofrequency coagulation: multivariate meta-analysis and review of contributing factors. Ann Surg 2005; 242: 158-171
  • 15 S3-Leitlinie Hepatozelluläres Karzinom. Deutsche Gesellschaft für Interventionelle Radiologie und minimal-invasive Therapie 2012 Im Internet: http://v2.degir.de/download/dokman/S3-LL-HCC
  • 16 Gillams AR, Lees WR. Five-year survival in 309 patients with colorectal liver metastases treated with radiofrequency ablation. Eur Radiol 2009; 19: 1206-1213
  • 17 Siperstein AE, Berber E, Ballem N et al. Survival after radiofrequency ablation of colorectal liver metastases: 10-year experience. Ann Surg 2007; 246: 559-565
  • 18 Van Tilborg AA, Meijerink MR, Sietses C et al. Long-term results of radiofrequency ablation for unresectable colorectal liver metastases: a potentially curative intervention. Br J Radiol 2011; 84: 556-565
  • 19 Jakobs TF, Hoffmann RT, Schrader A et al. CT-guided radiofrequency ablation in patients with hepatic metastases from breast cancer. Cardiovasc Intervent Radiol 2009; 32: 38-46
  • 20 Mulier S, Mulier P, Ni Y et al. Complications of radiofrequency coagulation of liver tumours. Br J Surg 2002; 89: 1206-1222
  • 21 Ricke J, Wust P, Wieners G et al. Liver malignancies: CT-guided interstitial brachytherapy in patients with unfavorable lesions for thermal ablation. J Vasc Interv Radiol 2004; 15: 1279-1286
  • 22 Ricke J, Mohnike K, Pech M et al. Local response and impact on survival after local ablation of liver metastases from colorectal carcinoma by computed tomography-guided high-dose-rate brachytherapy. Int J Radiat Oncol Biol Phys 2010; 78: 479-485
  • 23 Mohnike K, Wieners G, Schwartz F et al. Computed tomography-guided high-dose-rate brachytherapy in hepatocellular carcinoma: safety, efficacy, and effect on survival. Int J Radiat Oncol Biol Phys 2010; 78: 172-179
  • 24 Schnapauff D, Denecke T, Grieser C et al. Computed tomography-guided interstitial HDR brachytherapy (CT-HDRBT) of the liver in patients with irresectable intrahepatic cholangiocarcinoma. Cardiovasc Intervent Radiol 2012; 35: 581-587
  • 25 Wieners G, Pech M, Hildebrandt B et al. Phase II feasibility study on the combination of two different regional treatment approaches in patients with colorectal “liver-only” metastases: hepatic interstitial brachytherapy plus regional chemotherapy. Cardiovasc Intervent Radiol 2009; 32: 937-945
  • 26 Wybranski C, Seidensticker M, Mohnike K et al. In vivo assessment of dose volume and dose gradient effects on the tolerance dose of small liver volumes after single-fraction high-dose-rate 192Ir irradiation. Radiat Res 2009; 172: 598-606
  • 27 Ricke J, Seidensticker M, Ludemann L et al. In vivo assessment of the tolerance dose of small liver volumes after single-fraction HDR irradiation. Int J Radiat Oncol Biol Phys 2005; 62: 776-784
  • 28 Ruhl R, Ludemann L, Czarnecka A et al. Radiobiological restrictions and tolerance doses of repeated single-fraction hdr-irradiation of intersecting small liver volumes for recurrent hepatic metastases. Radiat Oncol 2010; 5: 44
  • 29 Salem R, Thurston KG. Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: Technical and methodologic considerations. J Vasc Interv Radiol 2006; 17: 1251-1278
  • 30 Salem R, Thurston KG. Radioembolization with yttrium-90 microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 3: Comprehensive literature review and future direction. J Vasc Interv Radiol 2006; 17: 1571-1593
  • 31 Salem R, Thurston KG. Radioembolization with 90yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 2: Special topics. J Vasc Interv Radiol 2006; 17: 1425-1439
  • 32 Kennedy AS, Nutting C, Coldwell D et al. Pathologic response and microdosimetry of (90)Y microspheres in man: review of four explanted whole livers. Int J Radiat Oncol Biol Phys 2004; 60: 1552-1563
  • 33 Wang LM, Jani AR, Hill EJ et al. Anatomical basis and histopathological changes resulting from selective internal radiotherapy for liver metastases. J Clin Pathol 2013; 66: 205-211
  • 34 Kennedy A, Nag S, Salem R et al. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int J Radiat Oncol Biol Phys 2007; 68: 13-23
  • 35 Denecke T, Ruhl R, Hildebrandt B et al. Planning transarterial radioembolization of colorectal liver metastases with Yttrium 90 microspheres: evaluation of a sequential diagnostic approach using radiologic and nuclear medicine imaging techniques. Eur Radiol 2008; 18: 892-902
  • 36 Seidensticker R, Seidensticker M, Damm R et al. Hepatic toxicity after radioembolization of the liver using (90)Y-microspheres: sequential lobar versus whole liver approach. Cardiovasc Intervent Radiol 2012; 35: 1109-1118
  • 37 Zarva A, Mohnike K, Damm R et al. Safety of repeated radioembolizations in patients with advanced primary and secondary liver tumors and progressive disease after first selective internal radiotherapy. J Nucl Med 2014; 55: 360-366
  • 38 Goin JE, Salem R, Carr BI et al. Treatment of unresectable hepatocellular carcinoma with intrahepatic yttrium 90 microspheres: a risk-stratification analysis. J Vasc Interv Radiol 2005; 16: 195-203
  • 39 Seidensticker R, Denecke T, Kraus P et al. Matched-pair comparison of radioembolization plus best supportive care versus best supportive care alone for chemotherapy refractory liver-dominant colorectal metastases. Cardiovasc Intervent Radiol 2012; 35: 1066-1073
  • 40 Cosimelli M, Golfieri R, Cagol PP et al. Multi-centre phase II clinical trial of yttrium-90 resin microspheres alone in unresectable, chemotherapy refractory colorectal liver metastases. Br J Cancer 2010; 103: 324-331
  • 41 Mulcahy MF, Lewandowski RJ, Ibrahim SM et al. Radioembolization of colorectal hepatic metastases using yttrium-90 microspheres. Cancer 2009; 115: 1849-1858
  • 42 Russell AH, Clyde C, Wasserman TH et al. Accelerated hyperfractionated hepatic irradiation in the management of patients with liver metastases: results of the RTOG dose escalating protocol. Int J Radiat Oncol Biol Phys 1993; 27: 117-123
  • 43 Wunderink W, Mendez RomeroA, de Kruijf W et al. Reduction of respiratory liver tumor motion by abdominal compression in stereotactic body frame, analyzed by tracking fiducial markers implanted in liver. Int J Radiat Oncol Biol Phys 2008; 71: 907-915
  • 44 Zhang T, Orton NP, Tome WA. On the automated definition of mobile target volumes from 4D-CT images for stereotactic body radiotherapy. Med Phys 2005; 32: 3493-3502
  • 45 Wurm RE, Gum F, Erbel S et al. Image guided respiratory gated hypofractionated Stereotactic Body Radiation Therapy (H-SBRT) for liver and lung tumors: Initial experience. Acta Oncol 2006; 45: 881-889
  • 46 Casamassima F, Cavedon C, Francescon P et al. Use of motion tracking in stereotactic body radiotherapy: Evaluation of uncertainty in off-target dose distribution and optimization strategies. Acta Oncol 2006; 45: 943-947
  • 47 Scorsetti M, Clerici E, Comito T. Stereotactic body radiation therapy for liver metastases. J Gastrointest Oncol 2014; 5: 190-197
  • 48 Rule W, Timmerman R, Tong L et al. Phase I dose-escalation study of stereotactic body radiotherapy in patients with hepatic metastases. Ann Surg Oncol 2011; 18: 1081-1087
  • 49 Zamboglou C, Messmer MB, Becker G et al. Stereotactic radiotherapy in the liver hilum. Basis for future studies. Strahlenther Onkol 2012; 188: 35-41
  • 50 Dunlap NE, Cai J, Biedermann GB et al. Chest wall volume receiving >30 Gy predicts risk of severe pain and/or rib fracture after lung stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 2010; 76: 796-801
  • 51 Herfarth KK, Debus J, Lohr F et al. Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial. J Clin Oncol 2001; 19: 164-170
  • 52 Wulf J, Guckenberger M, Haedinger U et al. Stereotactic radiotherapy of primary liver cancer and hepatic metastases. Acta Oncol 2006; 45: 838-847
  • 53 Hoyer M, Roed H, Traberg HansenA et al. Phase II study on stereotactic body radiotherapy of colorectal metastases. Acta Oncol 2006; 45: 823-830
  • 54 Mendez RomeroA, Wunderink W, Hussain SM et al. Stereotactic body radiation therapy for primary and metastatic liver tumors: A single institution phase i-ii study. Acta Oncol 2006; 45: 831-837
  • 55 Katz AW, Carey-Sampson M, Muhs AG et al. Hypofractionated stereotactic body radiation therapy (SBRT) for limited hepatic metastases. Int J Radiat Oncol Biol Phys 2007; 67: 793-798
  • 56 Milano MT, Katz AW, Muhs AG et al. A prospective pilot study of curative-intent stereotactic body radiation therapy in patients with 5 or fewer oligometastatic lesions. Cancer 2008; 112: 650-658
  • 57 Rusthoven KE, Kavanagh BD, Cardenes H et al. Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol 2009; 27: 1572-1578
  • 58 van der Pool AE, Mendez RomeroA, Wunderink W et al. Stereotactic body radiation therapy for colorectal liver metastases. Brit J Surg 2010; 97: 377-382