Kardiologie up2date 2015; 11(02): 109-125
DOI: 10.1055/s-0034-1392452
Herzklappenerkrankungen
© Georg Thieme Verlag KG Stuttgart · New York

Neuentwicklungen der Herzunterstützungssysteme – Möglichkeiten und Grenzen

Thomas Pühler
,
Stephan Ensminger
,
Michiel Morshuis
,
Jan Gummert
Further Information

Publication History

Publication Date:
24 July 2015 (online)

Abstract

Advanced Heart failure is worldwide an increasing problem. Implantation of mechanical circulatory support devices (MSCD) in the latter patients and especially the implantation of left ventricular assist devices (LVAD) is nowadays an established therapeutic option for advanced heart failure and becoming a more and more realistic alternative to heart transplantation (HTX. There are a number of different treatment options for these patients, such as bridge to transplantation (BTT), bridge to candidacy (BTC), bridge to recovery (BTR) and the destination therapy (DT) option. The latter option has become more frequent during the last years as a consequence of a rising number of older patients with terminal heart failure requiring therapy whilst not being eligible for HTX. These factors have led to a rapid increasing number of LVAD implantations and centers performing these strategies. Survival rates and quality of live have improved since the introduction of smaller, intra-pericardial and more durable continuous flow left ventricular devices. Though improvements in LVAD pump-design and durability have been made, most common complications for these patients are still device related problems, such as coagulation disorders, gastrointestinal bleeding, device related infection, pump thrombosis or cerebrovascular accidents. However, some questions still remain unanswered or are still under debate such as the exact timepoint for LVAD implantation. In addition aspects such as better biocompatibility to reduce device related problems are still a major challenge for the upcoming LVAD era. This paper will concentrate on the different treatment options and LVAD systems and their outcome, current trends in the LVAD development and the limitations of the devices for the patients.

Kernaussagen
  • Als Konsequenz aus dem Ungleichgewicht von Organangebot, durchgeführten Herztransplantationen und Patienten mit einer terminalen Herzinsuffizienz, die für eine Herztransplantation gelistet sind, und bei einer immer älter werdenden Bevölkerung kann die Herztransplantation nicht mehr die alleinige Option in der Therapie der terminalen Herzinsuffizienz sein. Daher hat sich in den meisten Fällen die LVAD-Therapie als „destination therapy“ als einzig sinnvolle Alternative für diese Patienten herauskristallisiert, insbesondere bei einer klaren Kontraindikation zur Herztransplantation.

  • Neben dem DT-Konzept können LVAD auch implantiert werden, um die Zeit bis zur Herztransplantation zu überbrücken (BTC = „bridge to candidacy“), um den Patienten zu stabilisieren und die Möglichkeit einer Herztransplantation zu beurteilen (BTT = „bridge to transplantation“) oder um ihn ggf. vom LVAD zu entwöhnen (BTR = „bridge to recovery“).

  • Das extraperikardiale HeartMate-II- und das intraperikardiale HeartWare-LVAD sind dabei im Moment die beiden weltweit am häufigsten implantierten LVAD mit kontinuierlichem Fluss – im Gegensatz zum früher verwendeten pulsatilen Fluss.

  • LVAD können heute unter Verzicht auf eine Herz-Lungen-Maschine implantiert werden, wobei die Inflow-Kanüle in der linken Herzspitze über eine linkslaterale Thorakotomie verankert und die Outflow-Kanüle über eine partielle obere Sternotomie minimal-invasiv in die Aorta eingenäht wird.

  • Indikationen der LVAD-Implantation wurden von der ESC bereits 2012 publiziert Tab. [ 1 ]). Der klinische Zustand der Patienten lässt sich u. a. durch die objektivierbaren INTERMACS-Stadien beurteilen. Die meisten LVAD-Implantationen gehen auf eine DT-Indikation zurück, d. h., dass eine spätere Herztransplantation kontraindiziert ist.

  • Obwohl die Adverse-Event-Raten, d. h. die Häufigkeiten von Pumpenthrombosen, Driveline-Infektionen und thromboembolischen Ereignissen in den letzten Jahren durch Verbesserung des Patientenmanagements rückläufig waren, sind diese Ereignisse immer noch die Lebensqualität beeinträchtigende und zum großen Teil lebensbedrohliche Komplikationen für den Patienten und limitieren darüber hinaus die LVAD-Therapie im Langzeitverlauf.

 
  • Literatur

  • 1 Lund LH, Edwards LB, Kucheryavaya AY et al. The Registry of the International Society for Heart and Lung Transplantation: Thirtieth Official Adult Heart Transplant Report – 2013; focus theme: age. J Heart Lung Transplant 2013; 32 : 951-964
  • 2 Leyva F, Nisam S, Auricchio A. 20 years of cardiac resynchronization therapy. J Am Coll Cardiol 2014; 9: 1047-1058
  • 3 Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999; 12: 2001-2007
  • 4 The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991; 325: 293-302
  • 5 www.eurotransplant.org
  • 6 Kirklin JK, Naftel DC, Pagani FD et al. Long-term mechanical circulatory support (destination therapy): on track to compete with heart transplantation?. J Thorac Cardiovasc Surg 2012; 144: 584-603
  • 7 Beckmann A, Funkat AK, Lewandowski J et al. Cardiac surgery in Germany during 2012: a report on behalf of the German Society for Thoracic and Cardiovascular Surgery. Thorac Cardiovasc Surg 2014; 62: 5-17
  • 8 Rose EA, Gelijns AC, Moskowitz AJ et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 2001; 5: 1435-1443
  • 9 Galvao M, Saeed O, Immekus J et al. An International Survey to Assess Referral Thresholds for Destination Therapy in Non-Inotrope Dependent Patients: Results of the CONSENSUS-DT Study. J Card Fail 2014; 20
  • 10 Mark S, Slaughter MD, Michael A et al. HeartWare Miniature Axial-Flow Ventricular Assist Device Design and Initial Feasibility Test. Tex Heart Inst J 2009; 36: 12-16
  • 11 Cohn WE, Frazier OH. Off-pump insertion of an extracorporeal LVAD through a left upper-quadrant incision. Tex Heart Inst J 2006; 33: 48-50
  • 12 Cohn WE, Mallidi HR, Frazier OH. Safe, effective off-pump sternal sparing approach for HeartMate II exchange. Ann Thorac Surg 2013; 96: 2259-2261
  • 13 Rojas SV, Avsar M, Hanke JS et al. Minimally Invasive Ventricular Assist Device Surgery. Artif Organs 2015;
  • 14 McMurray JJ, Adamopoulos S, Anker SD et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2012; 14: 803-869
  • 15 Mancini D, Lietz K. Selection of cardiac transplantation candidates in 2010. Circulation 2010; 13: 173-183
  • 16 Kirklin JK, Naftel DC, Pagani FD et al. Sixth INTERMACS annual report: A 10,000-patient database. J Heart Lung Transplant 2014; 33: 555-564
  • 17 Kirklin JK, Naftel DC, Stevenson LW et al. INTERMACS database for durable devices for circulatory support: first annual report. J Heart Lung Transplant 2008; 27: 1065-1072
  • 18 Porepa LF, Starling RC. Destination therapy with left ventricular assist devices: for whom and when?. Can J Cardiol 2014; 30: 296-303
  • 19 Yoshioka 1 D, Sakaguchi T, Saito S et al. Predictor of early mortality for severe heart failure patients with left ventricular assist device implantation: significance of INTERMACS level and renal function. Circ J 2012; 76: 1631-1638
  • 20 Teuteberg JJ, Stewart GC, Jessup M et al. Implant strategies change over time and impact outcomes: insights from the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). JACC Heart Fail 2013; 1: 369-378
  • 21 Slaughter MS, Rogers JG, Milano CA et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 2009; 3: 2241-2251
  • 22 Rogers JG, Aaronson KD, Boyle AJ et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol 2010; 27: 1826-1834
  • 23 Jorde UP, Kushwaha SS, Tatooles AJ et al. Results of the destination therapy post-food and drug administration approval study with a continuous flow left ventricular assist device: a prospective study using the INTERMACS registry (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol 2014; 6: 1751-1757
  • 24 Beyersdorf F, Schlensak C, Berchtold-Herz M et al. Regression of “fixed” pulmonary vascular resistance in heart transplant candidates after unloading with ventricular assist devices. J Thorac Cardiovasc Surg 2010; 140: 747-749
  • 25 Martin J, Siegenthaler MP, Friesewinkel O et al. Implantable left ventricular assist device for treatment of pulmonary hypertension in candidates for orthotopic heart transplantation-a preliminary study. Eur J Cardiothorac Surg 2004; 25: 971-977
  • 26 Etz CD, Welp HA, Tjan TD et al. Medically refractory pulmonary hypertension: treatment with nonpulsatile left ventricular assist devices. Ann Thorac Surg 2007; 83: 1697-1705
  • 27 Zimpfer D, Zrunek P, Roethy W et al. Left ventricular assist devices decrease fixed pulmonary hypertension in cardiac transplant candidates. J Thorac Cardiovasc Surg 2007; 133: 689-695
  • 28 Atluri P, Goldstone AB, Fairman AS et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg 2013; 96: 857-863
  • 29 Aissaoui N, Morshuis M, Schoenbrodt M et al. Temporary right ventricular mechanical circulatory support for the management of right ventricular failure in critically ill patients. J Thorac Cardiovasc Surg 2013; 146: 186-191
  • 30 Segura AM, Gregoric I, Radovancevic R et al. Morphologic changes in the aortic wall media after support with a continuous-flow left ventricular assist device. J Heart Lung Transplant 2013; 32 : 1096-1100
  • 31 Geisen U, Heilmann C, Beyersdorf F et al. Non-surgical bleeding in patients with ventricular assist devices could be explained by acquired von Willebrand disease. Eur J Cardiothorac Surg 2008; 33: 679-684
  • 32 Meyer AL, Malehsa D, Bara C et al. Acquired von Willebrand syndrome in patients with an axial flow left ventricular assist device. CircHeart Fail 2010; 3: 675-681
  • 33 Crow S, Chen D, Milano C et al. Acquired von Willebrand syndrome in continuous-flow ventricular assist device recipients. Ann Thorac Surg 2010; 90: 1263-1269
  • 34 Uriel N, Pak SW, Jorde UP et al. Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol 2010 5: 1207-1213
  • 35 Klovaite J, Gustafsson F, Mortensen SA et al. Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II). J Am Coll Cardiol 2009; 9: 2162-2167
  • 36 Morgan JA, Paone G, Nemeh HW et al. Gastrointestinal bleeding with the HeartMate II left ventricular assist device. J Heart Lung Transplant 2012; 31: 715-718
  • 37 Stern DR, Kazam J, Edwards P et al. Increased incidence of gastrointestinal bleeding following implantation of the HeartMate II LVAD. J Card Surg 2010; 25: 352-356
  • 38 Hasin T, Marmor Y, Kremers W et al. Readmissions after implantation of axial flow left ventricular assist device. J Am Coll Cardiol 2013; 15: 153-163
  • 39 Boyle AJ, Jorde UP, Sun B et al. Pre-operative risk factors of bleeding and stroke during left ventricular assist device support: an analysis of more than 900 HeartMate II outpatients. J Am Coll Cardiol 2014; 11: 880-888
  • 40 Demirozu ZT, Radovancevic R, Hochman LF et al. Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J Heart Lung Transplant 2011; 30: 849-853
  • 41 Moazami N, Milano CA, John R et al. Pump replacement for left ventricular assist device failure can be done safely and is associated with low mortality. Ann Thorac Surg 2013; 95: 500-505
  • 42 Schaffer JM, Allen JG, Weiss ES et al. Infectious complications after pulsatile-flow and continuous-flow left ventricular assist device implantation. J Heart Lung Transplant 2011; 30: 164-174
  • 43 Sinha P, Chen JM, Flannery M et al. Infections during left ventricular assist device support do not affect posttransplant outcomes. Circulation 2000; 7: III194-III199
  • 44 Kalavrouziotis D, Tong MZ, Starling RC et al. Percutaneous lead dysfunction in the HeartMate II left ventricular assist device. Ann Thorac Surg 2014; 97: 1373-1378
  • 45 Boyle AJ, Russell SD, Teuteberg JJ et al. Low thromboembolism and pump thrombosis with the HeartMate II left ventricular assist device: analysis of outpatient anti-coagulation. J Heart Lung Transplant 2009; 28: 881-887
  • 46 Menon AK, Götzenich A, Sassmannshausen H et al. Low stroke rate and few thrombo-embolic events after HeartMate II implantation under mild anticoagulation. Eur J Cardiothorac Surg 2012; 42: 319-323
  • 47 John R, Naka Y, Smedira NG et al. Continuous flow left ventricular assist device outcomes in commercial use compared with the prior clinical trial. Ann Thorac Surg 2011; 92: 1406-1413
  • 48 Kato TS, Schulze PC, Yang J et al. P re-operative and post-operative risk factors associated with neurologic complications in patients with advanced heart failure supported by a left ventricular assist device. J Heart Lung Transplant 2012; 31: 1-8
  • 49 Stulak JM, Deo S, Schirger J et al. Preoperative atrial fibrillation increases risk of thromboembolic events after left ventricular assist device implantation. Ann Thorac Surg 2013; 96: 2161-2167
  • 50 Nakajima I, Kato TS, Komamura K et al. Pre- and post-operative risk factors associated with cerebrovascular accidents in patients supported by left ventricular assist device. -Single center's experience in japan-. Circ J 2011; 75 (05) 1138-1146
  • 51 Morgan 1 JA, Brewer RJ, Nemeh HW et al. Stroke while on long-term left ventricular assist device support: incidence, outcome, and predictors. ASAIO J 2014; 60: 284-289
  • 52 Goldstein DJ, John R, Salerno C et al. Algorithm for the diagnosis and management of suspected pump thrombus. J Heart Lung Transplant 2013; 32: 667-670
  • 53 Shah P, Mehta VM, Cowger JA et al. Diagnosis of hemolysis and device thrombosis with lactate dehydrogenase during left ventricular assist device support. J Heart Lung Transplant 2014; 33: 102-104
  • 54 Boyle AJ, Jorde UP, Sun B et al. HeartMate II Clinical Investigators Pre-operative risk factors of bleeding and stroke during left ventricular assist device support: an analysis of more than 900 HeartMate II outpatients. J Am Coll Cardiol 2014; 11: 880-888
  • 55 Moazami N, Milano CA, John R et al. Pump replacement for left ventricular assist device failure can be done safely and is associated with low mortality. Ann Thorac Surg 2013; 95: 500-5
  • 56 Starling RC, Moazami N, Silvestry SC et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med 2014; 2: 33-40
  • 57 Hoefer D, Velik-Salchner C, Antretter H. Increase in left ventricular assist device thrombosis. N Engl J Med 2014; 10: 1464
  • 58 Nishimura M, Ogiwara M, Ishikawa M. Fifteen-month circulatory support for sustained ventricularfibrillation by left ventricular assist device. J Thorac Cardiovasc Surg 2003; 126: 1190-1192
  • 59 Oz M, Rose E, Slater J et al. Malignant ventricular arrhythmias are well tolerated in patients receiving long-term left ventricular assist devices. J Am Coll Cardiol 1994; 24: 1688-1691
  • 60 Ziv O, Dizon J, Thosani A et al. Effects of left ventricular assist device therapy on ventricular arrhythmias. J Am Coll Cardiol 2005; 45: 1428-1434
  • 61 Cantillon DJ, Saliba WI, Wazni OM et al. Low cardiac output associated with ventricular tachyarrhythmias in continuous-flow LVAD recipients with a concomitant ICD (LoCo VT Study). J Heart Lung Transplant 2014; 33: 318-320
  • 62 Garan AR, Yuzefpolskaya M, Colombo PC et al. Ventricular arrhythmias and implantable cardioverter-defibrillator therapy in patients with continuous-flow left ventricular assist devices: need for primary prevention?. J Am Coll Cardiol 2013; 25: 2542-2550
  • 63 Mancini DM, Beniaminovitz A, Levin H et al. Low incidence of myocardial recovery after left ventricular assist device implantation in patients with chronic heart failure. Circulation 1998; 1: 2383-2389
  • 64 Frazier OH, Myers TJ. Left ventricular assist system as a bridge to myocardial recovery. Ann Thorac Surg 1999; 68: 734-741
  • 65 Dandel M, Weng Y, Siniawski H et al. Long-term results in patients with idiopathic dilated cardiomyopathy after weaning from left ventricular assist devices. Circulation 2005; 09: I37-45
  • 66 Birks EJ, Tansley PD, Hardy J et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med 2006; 18: 1873-1884
  • 67 Krabatsch T, Schweiger M, Dandel M et al. Is bridge to recovery more likely with pulsatile left ventricular assist devices than with nonpulsatile-flow systems?. Ann Thorac Surg 2011; 91: 1335-1340
  • 68 Devore AD, Mentz RJ, Patel CB. Medical management of patients with continuous-flow left ventricular assist devices. Curr Treat Options Cardiovasc Med 2014; 16: 283
  • 69 Rosenbaum AN, John R, Liao KK et al. Survival in elderly patients supported with continuous flow left ventricular assist device as bridge to transplantation or destination therapy. J Card Fail 2014; 20: 161-167
  • 70 Flint KM, Matlock DD, Sundareswaran KS et al. Pre-operative health status and outcomes after continuous-flow left ventricular assist device implantation. J Heart Lung Transplant 2013; 32 (12) 1249-1254
  • 71 Oz MC, Gelijns AC, Miller L et al. Left ventricular assist devices as permanent heart failure therapy: the price of progress. Ann Surg 2003; 238: 577-583
  • 72 Miller LW, Nelson KE, Bostic RR et al. Hospital costs for left ventricular assist devices for destination therapy: lower costs for implantation in the post-REMATCH era. J Heart Lung Transplant 2006; 25: 778-784
  • 73 Clegg 1 AJ, Scott DA, Loveman E et al. Clinical and cost-effectiveness of left ventricular assist devices as destination therapy for people with end-stage heart failure: a systematic review and economic evaluation. Int J Technol Assess Health Care 2007; 23: 261-268
  • 74 Slaughter MS, Bostic R, Tong K et al. Temporal changes in hospital costs for left ventricular assist device implantation. J Card Surg 2011; 26: 535-541