RSS-Feed abonnieren
DOI: 10.1055/s-0035-1545338
Bildgebende Diagnostik des primären Prostatakarzinoms: Aktueller Stand und neue Entwicklungen
Imaging of Primary Prostate Cancer: Current Status and New DevelopmentsPublikationsverlauf
Publikationsdatum:
09. Juni 2015 (online)

Zusammenfassung
Dieser Artikel beschreibt die aktuellen bildgebenden Verfahren in Radiologie und Nuklearmedizin in der Primärdiagnostik des Prostatakarzinoms. Von radiologischer Seite spielt hier das multiparametrische MRT eine zunehmende Rolle, insbesondere bei klinisch vermutetem Prostatakarzinom und bereits vorherigen negativen Biopsien. Während die Skelettszintigrafie als herkömmliches nuklearmedizinisches Verfahren eine wichtige Rolle zum Ausschluss von Knochenmetastasen in bestimmten Stadien spielt, haben morphologische Verfahren im Nachweis von Lymphknotenmetastasen aufgrund ihrer eingeschränkten Sensitivität nur eine limitierte klinische Bedeutung. Trotz anfänglicher positiver Berichte hat klinisch die PET (insbesondere mit Cholin-Derivaten) in der Routinediagnostik des primären Prostatakarzinoms in den letzten Jahren keine wesentliche Rolle gespielt. Die kürzliche Einführung von PSMA-Liganden lässt hier mit ersten vorläufigen Ergebnissen deutliche Verbesserungen insbesondere im nodalen Staging erhoffen. Weitere Fortschritte sind in der Kombination von PSMA-Liganden und multiparametrischen MRT mittels der Hybridmodalität PET/MRT zu erwarten. Diese hat das Potenzial durch komplementäre molekulare Informationen aus der PET sowie dem funktionellen MRT in der Zukunft konventionelle Techniken insbesondere für den initialen Nachweis bzw. der Biopsieplanung eines Prostatakarzinoms abzulösen.
Abstract
This article summarizes the current radiological and nuclear medicine procedures in imaging primary prostate cancer. Multiparametric MRI of the prostate is increasingly used especially in patient with high suspicion of prostate cancer and prior negative biopsy. Skeletal scintigraphy is the traditional method for ruling out bone metastases in intermediate and advanced tumor stages whereas morphological imaging yield limited clinical benefit in lymph node staging due to its limited sensitivity. Despite initial encouraging reports (especially with Choline-derivates) clinically PET has played no substantial role in staging primary prostate cancer during the last years. Preliminary results reporting on the use of recently introduced PSMA (prostate specific membrane antigen) – ligands for PET show great promise for a substantial improvement especially in nodal staging. Further advances can be expected when combining PSMA-ligands and multiparametric MRI by hybrid PET/MRI. Due to its complementary molecular information from PET and functional MRI this technique yields the potential in replacing conventional procedures especially for primary diagnosis and biopsy planning in prostate cancer in the future.
-
Literatur
- 1 Afshar-Oromieh A, Haberkorn U, Eder M et al. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18 F-FECH. Eur J Nucl Med Mol Imaging 2012; 39: 1085-1086
- 2 Akduman EI, Momtahen AJ, Balci NC et al. Comparison between malignant and benign abdominal lymph nodes on diffusion-weighted imaging. Acad Radiol 2008; 15: 641-646
- 3 AWMF Interdisziplinäre Leitlinie der Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms 2011
- 4 Barentsz JO, Richenberg J, Clements R et al. ESUR prostate MR guidelines 2012. Eur Radiol 2012; 22: 746-757
- 5 Beheshti M, Vali R, Waldenberger P et al. Detection of bone metastases in patients with prostate cancer by 18 F fluorocholine and 18 F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 2008; 35: 1766-1774
- 6 Briganti A, Abdollah F, Nini A et al. Performance characteristics of computed tomography in detecting lymph node metastases in contemporary patients with prostate cancer treated with extended pelvic lymph node dissection. Eur Urol 2012; 61: 1132-1138
- 7 Brogsitter C, Zophel K, Kotzerke J. 18 F-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging 2013; 40 (Suppl. 01) S18-S27
- 8 Bücheler E, Lackner KL, Thelen M. Einführung in die Radiologie, Diagnostik und Intervention. Thieme Verlag; 2006. 11. Auflage 606
- 9 Bundschuh RA, Wendl CM, Weirich G et al. Tumour volume delineation in prostate cancer assessed by [11C]choline PET/CT: validation with surgical specimens. Eur J Nucl Med Mol Imaging 2013; 40: 824-831
- 10 Chen YJ, Chu WC, Pu YS et al. Washout gradient in dynamic contrast-enhanced MRI is associated with tumor aggressiveness of prostate cancer. J Magn Reson Imaging 2012; 36: 912-919
- 11 de Jong IJ, Pruim J, Elsinga PH et al. Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med 2003; 44: 331-335
- 12 Eiber M, Maurer T, Beer A et al. Prospective evaluation of PSMA-PET imaging for preoperative lymph node staging in prostate cancer. J Nucl Med 2014; 55 (Supplement 1) 20
- 13 Eiber M, Souvatzoglou M, Maurer T et al. Initial experience in restaging of patients with recurrent prostate cancer: Comparison of 11C-Choline-PET/MR and 11C-Choline-PET/CT. Soc Nucl Med. 2013; Annu Meet Abstr 5: 343
- 14 Eiber M, Beer AJ, Holzapfel K et al. Preliminary results for characterization of pelvic lymph nodes in patients with prostate cancer by diffusion-weighted MR-imaging. Invest Radiol 2010; 45: 15-23
- 15 Eschmann SM, Pfannenberg AC, Rieger A et al. Comparison of 11C-choline-PET/CT and whole body-MRI for staging of prostate cancer. Nuklearmedizin 2007; 46: 161-168 quiz N147–N168
- 16 Evangelista L, Guttilla A, Zattoni F et al. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol 2013; 63: 1040-1048
- 17 Even-Sapir E, Metser U, Mishani E et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18 F-fluoride PET, and 18 F-fluoride PET/CT. J Nucl Med 2006; 47: 287-297
- 18 Farsad M, Schiavina R, Castellucci P et al. Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 2005; 46: 1642-1649
- 19 Franiel T. Multiparametric magnetic resonance imaging of the prostate – technique and clinical applications. Rofo 2011; 183: 607-617
- 20 Fuccio C, Castellucci P, Schiavina R et al. Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann Nucl Med 2010; 24: 485-492
- 21 Futterer JJ, Heijmink SW, Scheenen TW et al. Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 2006; 241: 449-458
- 22 Gutzeit A, Doert A, Froehlich JM et al. Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skeletal Radiol 2010; 39: 333-343
- 23 Haberland J, Bertz J, Wolf U et al. German cancer statistics 2004. BMC Cancer 2010; 10: 52
- 24 Heck MM, Souvatzoglou M, Retz M et al. Prospective comparison of computed tomography, diffusion-weighted magnetic resonance imaging and [11C]choline positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer patients. Eur J Nucl Med Mol Imaging 2014; 41: 694-701
- 25 Hovels AM, Heesakkers RA, Adang EM et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol 2008; 63: 387-395
- 26 Hricak H, Schoder H, Pucar D et al. Advances in imaging in the postoperative patient with a rising prostate-specific antigen level. Semin Oncol 2003; 30: 616-634
- 27 Hricak H, Wang L, Wei DC et al. The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy. Cancer 2004; 100: 2655-2663
- 28 Issa B. In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo-planar imaging. J Magn Reson Imaging 2002; 16: 196-200
- 29 Jacobs MA, Ouwerkerk R, Petrowski K et al. Diffusion-weighted imaging with apparent diffusion coefficient mapping and spectroscopy in prostate cancer. Top Magn Reson Imaging 2008; 19: 261-272
- 30 Jadvar H. Imaging evaluation of prostate cancer with 18 F-fluorodeoxyglucose PET/CT: utility and limitations. Eur J Nucl Med Mol Imaging 2013; 40 (Suppl. 01) S5-S10
- 31 Kahkonen E, Jambor I, Kemppainen J et al. In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res 2013; 19: 5434-5443
- 32 Kim JK, Kim KA, Park BW et al. Feasibility of diffusion-weighted imaging in the differentiation of metastatic from nonmetastatic lymph nodes: early experience. J Magn Reson Imaging 2008; 28: 714-719
- 33 Kotzerke J, Prang J, Neumaier B et al. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 2000; 27: 1415-1419
- 34 Krause BJ, Souvatzoglou M, Treiber U. Imaging of prostate cancer with PET/CT and radioactively labeled choline derivates. Urol Oncol 2013; 31: 427-435
- 35 Lecouvet FE, Geukens D, Stainier A et al. Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol 2007; 25: 3281-3287
- 36 Lim HK, Kim JK, Kim KA et al. Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection – a multireader study. Radiology 2009; 250: 145-151
- 37 Liu Y, Hu X, Liu H et al. A comparative study of radiolabeled bombesin analogs for the PET imaging of prostate cancer. J Nucl Med 2013; 54: 2132-2138
- 38 Manenti G, Squillaci E, Di Roma M et al. In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissue using thin-slice echo-planar imaging. Radiol Med 2006; 111: 1124-1133
- 39 Mease RC, Foss CA, Pomper MG. PET imaging in prostate cancer: focus on prostate-specific membrane antigen. Curr Top Med Chem 2013; 13: 951-962
- 40 Messiou C, Cook G, deSouza NM. Imaging metastatic bone disease from carcinoma of the prostate. Br J Cancer 2009; 101: 1225-1232
- 41 Mohsen B, Giorgio T, Rasoul ZS et al. Application of C-11-acetate positron-emission tomography (PET) imaging in prostate cancer: systematic review and meta-analysis of the literature. BJU Int 2013; 112: 1062-1072
- 42 Nozaki T, Yasuda K, Akashi T et al. Usefulness of single photon emission computed tomography imaging in the detection of lumbar vertebral metastases from prostate cancer. Int J Urol 2008; 15: 516-519
- 43 Osborne JR, Akhtar NH, Vallabhajosula S et al. Prostate-specific membrane antigen-based imaging. Urol Oncol 2013; 31: 144-154
- 44 Oto A, Yang C, Kayhan A et al. Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am J Roentgenol 2011; 197: 1382-1390
- 45 Oyama N, Akino H, Suzuki Y et al. Prognostic value of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. Mol Imaging Biol 2002; 4: 99-104
- 46 Park H, Wood D, Hussain H et al. Introducing parametric fusion PET/MRI of primary prostate cancer. J Nucl Med 2012; 53: 546-551
- 47 Puech P, Potiron E, Lemaitre L et al. Dynamic contrast-enhanced-magnetic resonance imaging evaluation of intraprostatic prostate cancer: correlation with radical prostatectomy specimens. Urology 2009; 74: 1094-1099
- 48 Raz O, Haider M, Trachtenberg J et al. MRI for men undergoing active surveillance or with rising PSA and negative biopsies. Nat Rev Urol 2010; 7: 543-551
- 49 Reske SN, Blumstein NM, Neumaier B et al. Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 2006; 47: 1249-1254
- 50 Richter S, Wuest M, Krieger SS et al. Synthesis and radiopharmacological evaluation of a high-affinity and metabolically stabilized 18 F-labeled bombesin analogue for molecular imaging of gastrin-releasing peptide receptor-expressing prostate cancer. Nucl Med Biol 2013; 40: 1025-1034
- 51 Rothke M, Blondin D, Schlemmer HP et al. PI-RADS classification: structured reporting for MRI of the prostate. Rofo 2013; 185: 253-261
- 52 Scher B, Seitz M, Albinger W et al. Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging 2007; 34: 45-53
- 53 Schlemmer HP. Multiparametric MRI of the prostate: method for early detection of prostate cancer?. Rofo 2010; 182: 1067-1075
- 54 Sciarra A, Panebianco V, Ciccariello M et al. Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy. Clin Cancer Res 2010; 16: 1875-1883
- 55 Shreve PD, Grossman HB, Gross MD et al. Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology 1996; 199: 751-756
- 56 Silver DA, Pellicer I, Fair WR et al. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 1997; 3: 81-85
- 57 Smith-Jones PM, Vallabhajosula S, Navarro V et al. Radiolabeled monoclonal antibodies specific to the extracellular domain of prostate-specific membrane antigen: preclinical studies in nude mice bearing LNCaP human prostate tumor. J Nucl Med 2003; 44: 610-617
- 58 Souvatzoglou M, Eiber M, Martinez-Moeller A et al. PET/MR in prostate cancer: technical aspects and potential diagnostic value. Eur J Nucl Med Mol Imaging 2013; 40 (Suppl. 01) S79-S88
- 59 Souvatzoglou M, Eiber M, Takei T et al. Comparison of integrated whole-body [11C]choline PET/MR with PET/CT in patients with prostate cancer. Eur J Nucl Med Mol Imaging 2013; 40: 1486-1499
- 60 Souvatzoglou M, Weirich G, Schwarzenboeck S et al. The sensitivity of [11C]choline PET/CT to localize prostate cancer depends on the tumor configuration. Clin Cancer Res 2011; 17: 3751-3759
- 61 Taoka T, Mayr NA, Lee HJ et al. Factors influencing visualization of vertebral metastases on MR imaging versus bone scintigraphy. AJR Am J Roentgenol 2001; 176: 1525-1530
- 62 Umbehr MH, Muntener M, Hany T et al. The role of 11C-choline and 18 F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol 2013; 64: 106-117
- 63 Vilanova JC, Barcelo J. Diffusion-weighted whole-body MR screening. Eur J Radiol 2008; 67: 440-447
- 64 von Eyben FE, Kairemo K. Meta-analysis of 11C-choline and 18 F-choline PET/CT for management of patients with prostate cancer. Nucl Med Commun. 2013
- 65 Walz J, Loch T, Salomon G et al. Imaging of the prostate. Urologe A 2013; 52: 490-496
- 66 Wang L, Hricak H, Kattan MW et al. Combined endorectal and phased-array MRI in the prediction of pelvic lymph node metastasis in prostate cancer. AJR Am J Roentgenol 2006; 186: 743-748
- 67 Watanabe H, Kanematsu M, Kondo H et al. Preoperative detection of prostate cancer: a comparison with 11C-choline PET, 18 F-fluorodeoxyglucose PET and MR imaging. J Magn Reson Imaging 2010; 31: 1151-1156
- 68 Yerram NK, Volkin D, Turkbey B et al. Low suspicion lesions on multiparametric magnetic resonance imaging predict for the absence of high-risk prostate cancer. BJU Int 2012; 110: E783-E788