Synlett 2015; 26(15): 2117-2120
DOI: 10.1055/s-0035-1560067
letter
© Georg Thieme Verlag Stuttgart · New York

Anchoring of a Copper(II)–Schiff Base Complex onto Silica-Coated Ferrite Nanoparticles: A Magnetically Separable Catalyst for Oxidative C–O Coupling by Direct C(sp2)–H and C(sp3)–H Bond Activation

Rashid Ghanbaripour*
a   Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran 19379-58814, Iran   Email: r.ghanbaripour@gmail.com
,
Marjaneh Samadizadeh*
b   Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran 19379-58814, Iran   Email: mar.samadizadeh@iauctb.ac.ir
,
Golnaz Honarpisheh
b   Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran 19379-58814, Iran   Email: mar.samadizadeh@iauctb.ac.ir
,
Majid Abdolmohammadi
b   Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran 19379-58814, Iran   Email: mar.samadizadeh@iauctb.ac.ir
› Author Affiliations
Further Information

Publication History

Received: 01 June 2015

Accepted after revision: 04 July 2015

Publication Date:
19 August 2015 (online)


Abstract

A novel catalyst consisting of a Schiff base–copper complex on surface-modified silica-coated ferrite nanoparticles was been prepared and used for oxidative C–O cross-coupling reactions of 1,3-dicarbonyl compounds with formamides for the synthesis of enol carbamates. The new catalyst has also been used for esterification of alkylbenzenes with cyclic ethers.

Supporting Information

 
  • References and Notes

  • 1 Minakata S, Komatsu M. Chem. Rev. 2009; 109: 711
    • 2a Hagen J. Industrial Catalysis: A Practical Approach. Wiley-VCH; Weinheim: 1999
    • 2b Cole-Hamilton DJ. Science 2003; 299: 1702
    • 3a Zhang Y, Riduana SN. Chem. Soc. Rev. 2012; 41: 2083
    • 3b Du X, Sun Y, Tan B, Teng Q, Yao X, Su C, Wang W. Chem. Commun. 2010; 46: 970
    • 3c Ghanbaripour R, Mohammadpoor-Baltork I, Moghadam M, Khosropour AR, Tangestaninejad S, Mirkhani V. Polyhedron 2012; 31: 721
    • 4a Reddy LH, Arias JL, Nicolas J, Couvreur P. Chem. Rev. 2012; 112: 5818
    • 4b Panella B, Vargas A, Baiker A. J. Catal. 2009; 261: 88
    • 4c Shin J, Kim H, Lee IS. Chem. Commun. 2008; 5553
    • 4d Abu-Reziq R, Alper H, Wang D, Post ML. J. Am. Chem. Soc. 2006; 128: 5279
    • 4e Rossi LM, Silva FP, Vono LL. R, Kiyohara PK, Duarte EL, Itri R, Landers R, Machado G. Green Chem. 2007; 9: 379
    • 5a Wang S, Zhang Z, Liu B, Li J. Catal. Sci. Technol. 2013; 3: 2104
    • 5b Stevens PD, Li G, Fan J, Yen M, Gao Y. Chem. Commun. 2005; 4435
    • 5c Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN. Chem. Rev. 2008; 108: 2064
    • 6a Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 6b Xie J, Pan C, Abdukader A, Zhu C. Chem. Soc. Rev. 2014; 43: 5245
    • 6c Haines BE, Musaev DG. ACS Catal. 2015; 5: 830
    • 6d Zheng C, You SL. RSC Adv. 2014; 4: 6173
    • 6e He Y.-P, Zhang C, Fan M, Wu Z, Ma D. Org. Lett. 2015; 17: 496
    • 6f Li B, Wang S.-Q, Liu B, Shi B.-F. Org. Lett. 2015; 17: 1200
    • 6g Wu X, Zhao Y, Ge H. J. Am. Chem. Soc. 2015; 137: 4924
    • 7a Kalyani D, Deprez NR, Desai LV, Sanford MS. J. Am. Chem. Soc. 2005; 127: 7330
    • 7b Wei C, Li C.-J. J. Am. Chem. Soc. 2003; 125: 9584
    • 7c Baggett AW, Vasiliu M, Li B. Dixon D. A., Liu S. Y. 2015; 137: 5536
    • 7d Dateer RB, Chang S. J. Am. Chem. Soc. 2015; 137: 4908
    • 7e Li M, Yang Y, Zhou D, Wan D, You J. Org. Lett. 2015; 17: 2546
    • 8a Klapars A, Antilla JC, Huang X, Buchwald SL. J. Am. Chem. Soc. 2001; 123: 7727
    • 8b Klapars A, Huang X, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 7421
    • 8c Sequeira FC, Turnpenny BW, Chemler SR. Angew. Chem. Int. Ed. 2010; 49: 6365
    • 8d Xiong T, Li Y, Bi X, Lv Y, Zhang Q. Angew. Chem. Int. Ed. 2011; 50: 7140
    • 8e Neumann JJ, Suri M, Glorius F. Angew. Chem. Int. Ed. 2010; 49: 7790
    • 8f Alizadeh A, Ghanbaripour R. Synlett 2014; 25: 2777
    • 9a Ke Q, Zhang B, Hu B, Jin Y, Lu G. Chem. Commun. 2015; 51: 1012
    • 9b Wang CY, Song RJ, Wei WT, Fan JH, Li JH. Chem. Commun. 2015; 51: 2361
    • 9c Sarkar R, Mukhopadhyay C. Tetrahedron Lett. 2015; 56: 3872
    • 9d Shang X.-J, Liu Z.-Q. Tetrahedron Lett. 2015; 56: 482
    • 9e Xu W, Nachtsheim BJ. Org. Lett. 2015; 17: 1585
  • 10 Ghanbaripour R, Mohammadpoor-Baltork I, Moghadam M, Khosropour AR, Tangestaninejad S, Mirkhani V. J. Iran. Chem. Soc. 2012; 9: 791
  • 11 Liu ZL, Ding ZH, Yao KL, Tao J, Du GH, Lu QH, Wang X, Gong FL, Chen X. J. Magn. Magn. Mater. 2003; 265: 98
  • 12 Lim MH, Stein A. Chem. Mater. 1999; 11: 3285
    • 13a Kumar GS, Maheswari CU, Kumar RA, Kantam ML, Reddy KR. Angew. Chem. Int. Ed. 2011; 50: 11748
    • 13b Saberi D, Heydari A. Tetrahedron Lett. 2013; 54: 4178
    • 13c Azizi K, Karimi M, Heydari A. Tetrahedron Lett. 2015; 56: 812
    • 14a Yoo W.-J, Li C.-J. Tetrahedron Lett. 2007; 48: 1033
    • 14b Rout SK, Guin S, Chara KK, Banerjee A, Patel BK. Org. Lett. 2012; 14: 3982
    • 14c Yoo W.-J, Li C.-J. J. Org. Chem. 2006; 71: 6266
    • 14d Xu X, Ding W, Lin Y, Song Q. Org. Lett. 2015; 17: 516
    • 14e Li W, Duan Z, Jiang R, Lei A. Org. Lett. 2015; 17: 1397
    • 14f Zhou J, Jin C, Li X, Su W. RSC Adv. 2015; 5: 7232
    • 14g Rout SK, Guin S, Ali W, Gogoi A, Patel BK. Org. Lett. 2014; 16: 3086
  • 15 Enol Carbamates 2ag; General Procedure A 70% aq solution of TBHP (0.193 g, 1.5 equiv) was added dropwise to a mixture of the appropriate 1,3-dicarbonyl compound 1 (1 mmol), the magnetic catalyst (10 mg), and DMF (2 mL). The mixture was heated to 80 °C, stirred for 20 min, and then cooled to r.t. The catalyst was removed by using an external magnet, and the residue was extracted with EtOAc (3 × 10 mL), dried (MgSO4), filtered, and concentrated under vacuum. The crude product was purified by column chromatography. Allyl (2Z)-3-{[(Dimethylamino)carbonyl]oxy}but-2-enoate (2g) Yellow oil; yield: 160 mg (75%); IR (KBr): 1725, 1669, 1382, 1320, 1271, 1211, 1145, 1035, 750 cm−1. 1H NMR (400 MHz, CDCl3): δ = 2.06 (s, 3 H, CH3), 2.97 (s, 3 H, CH3N), 3.02 (s, 3 H, CH3N), 4.57 (dd, 3 J HH = 5.6 Hz, 4 J HH = 1.2 Hz, 2 H, CH2O), 5.18–5.34 (m, 2 H, CH2=CH), 5.58 (s, 1 H, CHCO2), 5.82–5.97 (m, 1 H, CH2=CH). 13C NMR (100 MHz, CDCl3) δ = 22.21, 36.59, 64.62, 107.61, 118.03, 132.31, 152.99, 161.33, 163.66.
  • 16 Aryl Esters 5a5h; General Procedure In a round-bottomed flask, a mixture of alkylbenzene 3 (1 mmol), magnetic catalyst (15 mg), and 70% aq TBHP (0.167 g, 1.3 equiv) in 1,4-dioxane (2 mL) was stirred at 80 °C for 10 h, then cooled to r.t. The catalyst was removed by using an external magnet and the residue was extracted with EtOAc (2 × 10 mL). The extracts were washed with 5% aq NaHCO3 (15 mL), dried (MgSO4), filtered, and concentrated under vacuum. The crude product was purified by column chromatography. 1,4-Dioxan-2-yl Benzoate (5a) Pale yellow oil; yield: 156 mg (75%); IR (KBr): 3071, 2970, 2861, 1718, 1529, 1455, 1402, 1276, 1014, 911, 879, 715 cm−1. 1H NMR (400 MHz, CDCl3) δ 3.64−3.69 (m, 1 H), 3.80−3.83 (m, 2 H), 3.85−3.89 (m, 2 H), 4.16−4.23 (m, 1 H), 6.08 (t, 3 J HH = 2.1 Hz, 1 H), 7.42−7.46 (m, 2 H), 7.55−7.57 (m, 1 H), 8.09−8.11 (m, 2 H). 13C NMR (100 MHz, CDCl3) δ = 61.9, 66.4, 68.1, 90.0, 128.6, 129.9, 130.2, 133.56, 165.4.