Synlett, Inhaltsverzeichnis Synlett 2016; 27(01): 70-74DOI: 10.1055/s-0035-1560176 letter © Georg Thieme Verlag Stuttgart · New YorkSynthetic Studies towards the Africanane Sesquiterpenes via the Cope Rearrangement of gem-Dimethyl-Substituted Divinyl Cyclopropanes Authors Institutsangaben Jonathan D. Osler Department of Chemistry, University of York, York, YO10 5DD, UK eMail: william.unsworth@york.ac.uk eMail: richard.taylor@york.ac.uk William P. Unsworth* Department of Chemistry, University of York, York, YO10 5DD, UK eMail: william.unsworth@york.ac.uk eMail: richard.taylor@york.ac.uk Richard J. K. Taylor* Department of Chemistry, University of York, York, YO10 5DD, UK eMail: william.unsworth@york.ac.uk eMail: richard.taylor@york.ac.uk Artikel empfehlen Abstract Artikel einzeln kaufen(opens in new window) Alle Artikel dieser Rubrik(opens in new window) To commemorate the 70th birthday of Prof. Steven Ley, FRS; inspirational synthetic organic chemist, mentor and friend Abstract The Cope rearrangement of gem-dimethyl-substituted divinylcyclopropanes has been used to construct functionalised cycloheptadienes. These scaffolds have been further elaborated to furnish advanced intermediates en route to africanane sesquiterpene natural products, most notably pyxidatol C. Key words Key wordspericyclic reactions - cyclopropanes - natural products - pyxidatol C - africananes. Volltext Referenzen References and Notes 1 Zheng YB, Lu C.-H, Zheng Z.-H, Lin X.-J, Su W.-J, Shen Y.-M. Helv. Chim. Acta 2008; 2174 2 McMorris TC, Lira R, Gantzel PK, Kelner MJ, Dawe R. J. Nat. Prod. 2006; 63: 1557 3 Tursch B, Braekman JC, Daloze D, Fritz P, Kelecom A, Karlsson R, Losman D. Tetrahedron Lett. 1974; 15: 747 4 Kashman Y, Bodner M, Finer-Moore JS, Clardy J. Experientia 1980; 36: 891 5a Reddy BS. G, Rao VD, Rao BC. H, Dhananjaya N, Kuttan R, Babu TD. Chem. Pharm. Bull. 1999; 47: 1214 5b Yang X, Deinze ML. J. Org. Chem. 1992; 57: 4717 5c Tursch B, Braekman JC, Daloze D, Fritz P, Losman D. Tetrahedron Lett. 1974; 9: 747 5d Bohlmann F, Zdero C. Phytochemistry 1978; 17: 1669 For syntheses of africanol 3, see: 6a Shirahama H, Hayano K, Kanemoto Y, Misumi S, Ohtsuka T, Hashiba N, Furusaki A, Murata S, Noyori R, Matsumoto T. Tetrahedron Lett. 1980; 21: 4835 6b Cossy J, BouzBouz S, Mouzza C. Synlett 1998; 621 6c Marquez F, De A, Ferreira JT. B, Piers E. J. Braz. Chem. Soc. 2000; 11: 502 6d Paquette LA, Ham WH. J. Am. Chem. Soc. 1987; 109: 3025 6e Sugimura T, Futagawa T, Tai A. Chem. Lett. 1990; 2295 6f Fan W, White JB. J. Org. Chem. 1993; 58: 3557 For syntheses of omphadiol 2, see: 7a Liu G, Romo D. Angew. Chem. Int. Ed. 2011; 50: 7537 7b Zhou L, Yao Y, Xu W, Liang G. J. Org. Chem. 2014; 79: 5345 8 For the synthesis of africanene 4, see: Matsuda Y, Endo Y, Saikawa Y, Nakata M. J. Org. Chem. 2011; 76: 6258 9a Burns AR, McAllister GD, Shanahan SE, Taylor RJ. K. Angew. Chem. Int. Ed. 2010; 49: 5574 9b Moody CL, Pugh DS, Taylor RJ. K. Tetrahedron Lett. 2011; 52: 2511 9c Unsworth WP, Kitsiou C, Taylor RJ. K. Org. Lett. 2013; 15: 258 9d Unsworth WP, Coulthard G, Kitsiou C, Taylor RJ. K. J. Org. Chem. 2014; 79: 1368 9e Lloyd MG, Taylor RJ. K, Unsworth WP. Org. Lett. 2014; 16: 2772 9f James MJ, Cuthbertson JD, O’Brien P, Taylor RJ. K, Unsworth WP. Angew. Chem. Int. Ed. 2015; 54: 7640 10 Osler JD, Unsworth WP, Taylor RJ. K. Org. Biomol. Chem. 2013; 11: 7587 11a Simmons HE, Smith RD. J. Am. Chem. Soc. 1959; 80: 5323 11b Charette AB, Beauchemin A. Org. React. 2001; 58: 1 12 It is envisaged that, if required, meso-diol 11 may also be converted into enantioenriched versions of compounds 12a–c, via an enzymatic desymmetrisation reaction sequence. For a related example of this type of process used in a total synthesis, see: Unsworth WP, Gallagher KA, Jean M, Schmidt JP, Diorazio LJ, Taylor RJ. K. Org. Lett. 2013; 15: 262 13 Nakamura M, Hirai A, Nakamura E. J. Am. Chem. Soc. 2003; 125: 2341 14 To a stirred solution of Et2Zn (170 μL, 1 M in hexanes, 0.170 mmol) in CH2Cl2 (1 mL) at 0 °C was added CH2I2 (27 μL, 0.340 mmol). This was stirred for 10 min before the addition of 19 (25 mg, 0.0850 mmol) in CH2Cl2 (1 mL) via cannula. The reaction was stirred at 0 °C for 30 min before it was quenched by the addition of sat. aq NH4Cl (5 mL). The organic layer was separated and the aqueous layer extracted with further portions of CH2Cl2 (2 × 10 mL). The combined organic extracts were dried (MgSO4), filtered, and concentrated under reduced pressure. The resulting crude product was purified by flash column chromatography on silica gel, eluting with PE–Et2O (15:1) to afford compound 20a as a colourless oil (8 mg, 32%) and 20b as a colourless oil (7 mg, 27%). Compound 20a: Rf = 0.21 (PE–Et2O, 4:1). IR (thin film): νmax = 3340, 2909, 2886, 2816 cm–1. 1H NMR (400 MHz, CDCl3): δ = 5.25–5.15 (2 H, m), 3.82–3.73 (3 H, m), 3.04 (1 H, d, J = 10.5 Hz), 2.37–2.31 (1 H, m), 1.80–1.74 (1 H, m), 1.57–1.43 (1 H, m), 1.06 (3 H, s), 0.98 (3 H, s), 0.92 (9 H, s), 0.90–0.88 (1 H, m), 0.82–0.77 (2 H, m), 0.10 (3 H, s), 0.10 (3 H, s). 13C NMR (101 MHz, CDCl3): δ = 140.9, 125.0, 68.9, 65.3, 48.2, 42.7, 40.2, 39.0, 32.3, 30.7, 27.7, 25.9, 19.3, 18.3, –5.3, –5.3. ESI-MS: m/z = 333 [MNa+]. HRMS: m/z calcd for C18H34NaO2Si [MNa+]: 333.2220; found: 333.2220. Compound 20b Rf = 0.16 (PE–Et2O, 4:1). IR (thin film): νmax = 3354, 2910, 2884, 2814 cm–1. 1H NMR (400 MHz, CDCl3): δ = 5.38–5.28 (2 H, m), 3.54–3.50 (2 H, m), 3.36 (1 H, dd, J = 10.0, 8.5 Hz), 3.06 (1 Hz H, d, J = 10.0 Hz), 2.93–2.88 (1 H, m), 1.84 (1 H, ddd, J = 14.0, 5.0, 2.0 Hz), 1.44–1.22 (2 H, m), 1.09 (3 H, s), 0.93 (3 H, s), 0.89 (9 H, s), 0.63–0.53 (2 H, m), 0.06 (6 H, s). 13C NMR (101 MHz, CDCl3): δ = 142.5, 124.7, 77.4, 73.5, 66.5, 42.5, 41.4, 38.0, 32.7, 28.4, 27.0, 26.0, 18.3, 16.1, –5.2. ESI-MS: m/z = 333 [MNa+]. HRMS: m/z calcd for C18H34NaO2Si [MNa+]: 333.2220; found: 333.2222. 15 Compound 27 exists as a mixture of diastereoisomers and keto–enol tautomers in solution in CDCl3, complicating its NMR spectra such that it was not possible to determine its E/Z ratio; based on precedent for similar transformations (see ref. 10) and the stereochemical outcome of the subsequent step, it is likely that the E-isomer predominates. 16 A stirred solution of 27 (1.00 g, 2.74 mmol) in toluene (100 mL) was heated to 100 °C for 16 h. After being cooled to r.t. the solution was concentrated under reduced pressure. The resulting light yellow oil was dissolved in CH2Cl2 (50 mL) and stirred. TFA (2.8 mL) was then added, and the reaction mixture was refluxed for a further 16 h before concentrating under reduced pressure. The resulting crude product was purified by flash column chromatography on silica gel, eluting with PE–EtOAc (20:1) to afford compound 29 as a colourless oil (369 mg, 51%). Rf = 0.18 (PE–EtOAc = 20:1). IR (thin film): νmax = 2954, 2930, 2858, 1745 cm–1. 1H NMR (400 MHz, CDCl3): δ = 5.83 (1 H, dd, J = 11.5, 6.0 Hz), 5.56 (1 H, dd, J = 12.0, 7.0 Hz), 5.50 (1 H, dt, J = 11.5, 2.0 Hz), 5.33 (1 H, d, J = 12.0 Hz), 4.15 (2 H, q, J = 7.0 Hz), 3.67–3.58 (1 H, m), 2.76–2.65 (1 H, m), 2.53–2.35 (2 H, m), 2.11 (3 H, s), 1.79–1.63 (2 H, m), 1.26 (3 H, t, J = 7.0 Hz), 1.13 (3 H, s, H-5), 1.10 (3 H, s, H-6). 13C NMR (101 MHz, CDCl3): δ = 208.9, 173.2, 139.9, 139.2, 128.7, 123.2, 60.9, 47.4, 41.9, 39.4, 39.1, 32.5, 29.9, 29.5, 27.0, 14.4. ESI-MS: m/z = 287 [MNa+]. HRMS: m/z calcd for C16H24NaO3 [MNa+]: 287.1618; found: 287.1610. 17a Nicolaou KC, Ellery SP, Chen JS. Angew. Chem. Int. Ed. 2009; 48: 7140 17b Banwell MG, Hockless DC. R, McLeod MD. New J. Chem. 2003; 27: 50 17c Molander GA, George KM, Monovich LG. J. Org. Chem. 2003; 68: 9533 17d Chen P, Wang J, Liu K, Li C. J. Org. Chem. 2008; 73: 339 17e Nicolaou KC, Li A, Edmonds DJ. Angew. Chem. Int. Ed. 2006; 45: 7086 18 In all of the experiments described, the samarium diiodide was generated using Procter’s published method: Szostak M, Spain M, Procter DJ. J. Org. Chem. 2012; 77: 3049 19 The syntheses of cyclopropane intermediates similar to compound 32 were reported during Kerr’s synthesis of (+)-taylorione: Johnstone C, Kerr WJ, Lange U. J. Chem. Soc., Chem. Commun. 1995; 457 Zusatzmaterial Zusatzmaterial Supporting Information (PDF)