Synlett 2015; 26(18): 2527-2530
DOI: 10.1055/s-0035-1560321
letter
© Georg Thieme Verlag Stuttgart · New York

Regioselective Suzuki–Miyaura Reactions of the Bis(triflate) of 4′,7-Dihydroxyisoflavone

Aws M. Hamdy
a   Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany   Email: peter.langer@uni-rostock.de
b   Department of Chemistry, College of Science, University of Mosul, Mosul, Iraq
,
Zien Khaddour
a   Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany   Email: peter.langer@uni-rostock.de
,
Alexander Villinger
a   Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany   Email: peter.langer@uni-rostock.de
,
Peter Langer*
a   Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany   Email: peter.langer@uni-rostock.de
c   Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany
› Author Affiliations
Further Information

Publication History

Received: 09 July 2015

Accepted after revision: 24 August 2015

Publication Date:
14 October 2015 (online)


In memory of our dear friend and colleague Professor Tamás Patonay

Abstract

Arylated isoflavones are prepared by Suzuki–Miyaura cross-coupling reactions of the bis(triflate) of 4′,7-dihydroxyisoflavone. The reactions proceed with very good regioselectivity in favor of the electronically more deficient position.

 
  • References and Notes

  • 1 Nagao T, Abe F, Kinjo J, Okabe H. Biol. Pharm. Bull. 2002; 7: 875
    • 2a Daskiewies J, Depeint F, Viornery L, Bayet C, Geraldine C, Comte G, Gee J, Johnson I, Ndjoko K, Hostettmann K, Barron D. J. Med. Chem. 2005; 48: 2790
    • 2b Rao YK, Fang SH, Tzeng YM. Bioorg. Med. Chem. 2005; 13: 6850
    • 2c Wang SF, Jiang Q, Ye YH, Li Y, Tan RX. Bioorg. Med. Chem. 2005; 13: 4880
    • 2d Gao H, Kawabata J. Bioorg. Med. Chem. 2005; 13: 1661
    • 2e Gao GY, Li DJ, Keung WM. J. Med. Chem. 2001; 44: 3320
    • 3a Su B, Hackett JC, Diaz-Cruz ES, Kim YW, Brueggemeier RW. Bioorg. Med. Chem. 2005; 13: 6571
    • 3b Kim YW, Hackett JC, Brueggemeier RW. J. Med. Chem. 2004; 47: 4032
    • 3c Traxler P, Green J, Mett H, Sequin U, Furet P. J. Med. Chem. 1999; 42: 1018
    • 3d Cushman M, Zhu H, Geahlen RL, Kraker AJ. J. Med. Chem. 1994; 37: 3353
    • 3e Havsteen B. Biochem. Pharm. 1983; 321: 141
    • 4a The Flavonoids: Advances in Research Since 1986 . Harborne TB. Chapman & Hall; London: 1986
    • 4b Middleton EJ, Kandaswami C, Theoharides TC. Pharmacol. Rev. 2000; 52: 673
    • 4c Yang CS, Prabhu S, Landau J. Drug Metab. Rev. 2001; 33: 237
    • 4d Haghiac M, Walle T. Nutr. Cancer 2005; 33: 220
    • 5a Habtemariam S. J. Nat. Prod. 1997; 60: 775
    • 5b Koganov MM, Dueva OV, Tsorin BL. J. Nat. Prod. 1999; 62: 481
    • 5c Lapidot T, Walker MD, Kanner J. J. Agric. Food Chem. 2002; 50: 7220
    • 5d Cho H, Yun CW, Park WK, Kong JY, Lee S, Kim B. Pharmacol. Res. 2004; 49: 37
    • 5e Critchfield JW, Butera ST, Folks TM. AIDS Res. Hum. Retrov. 1996; 12: 39
  • 6 Datla KP, Christidou M, Widmer WW, Rooprai HK, Dexter DT. Neuroreport 2001; 12: 3871
  • 7 Banerij A, Goomer N. Synthesis 1980; 874
  • 8 Allan J, Robinson R. J. Chem. Soc. 1924; 20: 2192
  • 9 Khanna MS, Singh OV, Garg CP, Kapoor RP. J. Chem. Soc., Perkin Trans. 1 1992; 2565
  • 10 Looker JH, Hanneman WW. J. Org. Chem. 1962; 27: 381
    • 11a Zembower D, Zhang H. J. Org. Chem. 1998; 63: 9300
    • 11b Zheng X, Meng W, Qing F. Tetrahedron Lett. 2004; 45: 8083
    • 11c Huang X, Tang E, Xu WM, Cao J. J. Comb. Chem. 2005; 7: 802
    • 11d Peng W.-J, Han X.-W, Yu B. Chin. J. Chem. 2006; 24: 1154
  • 12 Yang Q, Alper H. J. Org. Chem. 2012; 75: 948
  • 13 Rao ML. N, Venkatesh V, Jadhav DN. Synlett 2009; 2597
  • 14 Kim D, Ham K, Hong S. Org. Biomol. Chem. 2012; 10: 7305
  • 15 Akrawi A, Patonay T, Konya K, Langer P. Synlett 2013; 24: 860
  • 16 Eleya N, Malik I, Reimann S, Wittler K, Hein M, Patonay T, Villinger A, Ludwig R, Langer P. Eur. J. Org. Chem. 2012; 14: 1639
  • 17 4-Oxo-3-[4-(trifluoromethylsulfonyloxy)phenyl]-4H-chromen-7-yl Trifluoromethanesulfonate (2) To a solution of 1 (0.5 g, 1.96 mmol) in CH2Cl2 (20 mL) was added py (0.6 mL, 7.86 mmol) and the resulting mixture was stirred at r.t. To the solution was added Tf2O (0.8 mL, 4.72 mmol) and the mixture was stirred at r.t. for 10 min. Subsequently, the mixture was stirred at 40 °C for 30 min. After cooling, the mixture was concentrated in vacuo and the product was isolated by rapid flash column chromatography (silica gel, heptane–EtOAc, 8:2). Yield: 0.90 g (90%); white solid; mp 182–184 °C. IR (KBr): 3093, 2918, 2849 (w), 1648 (s), 1614 (m), 1578, 1551, 1536, 1530 (w) cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.61–7.70 (m, 3 H, ArH), 7.80 (d, J = 2.3 Hz, 1 H, ArH), 7.90 (d, J = 2.2 Hz, 1 H, ArH), 7.92–8.00 (m, 2 H, ArH), 8.75 (s, 1 H, CH=). 13C NMR (75.4 MHz, CDCl3): δ = 112.5 (CH), 116.0 (q, J C–F = 320 Hz, CF3), 119.2 (CH), 120.0 (q, J C–F = 320 Hz, CF3), 121.3 (CH), 122.0, 123.8 (C), 128.5, 131.2 (CH), 132.1, 148.8, 151.8, 155.9 (C), 156.0 (CH), 174.0 (CO). 19F NMR (282.4 MHz, CDCl3): δ = –72.53 (3 F, CF3), –72.74 (3 F, CF3). GC–MS (EI, 70 eV): m/z (%) = 519 (23) [M + H]+, 518 (100) [M]+, 454 (12). HRMS (EI, 70 eV): m/z [M]+ calcd for C17H8F6O8S2: 517.95593; found: 517.95651.
  • 18 CCDC 1419931 and 1419932 contain the crystallographic details for the products 2 and 5g described in this publication. Details are available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html, or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK; fax: +44(1223)336033, or deposit@ccdc.cam.ac.uk.
  • 19 Compounds 4a–d; General Procedure The reactions were carried out in a pressure tube. A solution of 2 (70 mg, 0.135 mmol), K2CO3 (2 mL, 2 M), Pd(PPh3)4 (6 mol%) and arylboronic acid 3 (2.2 equiv) in DMF (4 mL) was stirred at 130 °C for 10 h under an Ar atm. To the mixture were added H2O (20 mL) and CH2Cl2 (25 mL). The organic and aq layers were separated and the latter was extracted with CH2Cl2 (2 × 20 mL). The combined organic layers were dried (Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, heptane–EtOAc, 9:1).
  • 20 3-(4′-Methoxybiphenyl-4-yl)-7-(4-methoxyphenyl)-4H-chromen-4-one (4a) The product was obtained from the reaction of 2 (70 mg, 0.135 mmol), 3a (45 mg, 0.297 mmol), Pd(PPh3)4 (10 mg, 0.008658 mmol, 6 mol%) and K2CO3 (2 mL, 2 M) in DMF (4 mL). Yield: 48 mg (82%); white solid; mp 188–190 °C. IR (KBr): 3073, 3053, 3013, 2959, 2918, 2849 (w), 1901, 1732 (w), 1641, 1620, 1606, 1578, 1555, 1518 (m) cm–1. 1H NMR (300 MHz, CDCl3): δ = 3.81 (s, 6 H, 2 × OCH3), 6.97 (d, J = 8.5 Hz, 4 H, ArH), 7.18 (s, 2 H, ArH), 7.54–7.56 (m, 7 H, ArH), 7.97 (s, 2 H, ArH), 8.25 (d, J = 8.7 Hz, 1 H, CH=). 13C NMR (75.4 MHz, CDCl3): δ = 29.7, 54.4 (2 × OCH3), 114.5, 115.1, 122.8, 122.9 (CH), 123.2, 125.5 (C), 126.8, 128.1, 128.4, 128.5 (CH), 128.6, 128.7, 128.8, 129.1, 135.2, 135.8, 136.6, 153.0 (C), 156.6 (CH), 160.5 (CO). GC–MS (EI, 70 eV): m/z (%) = 434 (100) [M]+, 344 (24), 343 (35), 315 (13). HRMS (EI, 70 eV): m/z [M]+ calcd for C29H22O4: 434.15181; found: 434.15156.
  • 21 Compounds 5a–l; General Procedure The reactions were carried out in a pressure tube. A solution of 2 (70 mg, 0.135 mmol ), K2CO3 (2 mL, 2 M,), Pd(PPh3)4 (3 mol%) and arylboronic acid 3 (1.2 equiv) in DMF (4 mL) was stirred at 85 °C for 6 h under an Ar atm. To the mixture were added H2O (20 mL) and CH2Cl2 (25 mL). The organic and aq layers were separated and the latter was extracted with CH2Cl2 (2 × 20 mL). The combined organic layers were dried (Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, heptane–EtOAc, 9:1).
  • 22 4-[7-(4-Methoxyphenyl)-4-oxo-4H-chromen-3-yl]phenyl Trifluoromethanesulfonate (5a)The product was obtained from the reaction of 2 (70 mg, 0.135 mmol), 3a (25 mg, 0.162 mmol), Pd(PPh3)4 (5 mg, 0.004327 mmol, 3 mol%) and K2CO3 (2 mL, 2 M) in DMF (4 mL). Yield: 51 mg (80%); white solid; mp 173–175 °C. IR (KBr): 3085, 3036, 2955, 2916, 2848, 2670, 2559 (w), 1633, 1621, 1604 (m), 1585, 1552, 1518 (w) cm–1. 1H NMR (300 MHz, CDCl3): δ = 3.80 (s, 3 H, OCH3), 6.94 (d, J = 1.5 Hz, 2 H, ArH), 7.26 (d, J = 1.5 Hz, 2 H, ArH), 7.53–7.63 (m, 6 H, ArH), 7.97 (s, 1 H, ArH), 8.25 (d, J = 6.7 Hz, 1 H, CH=). 13C NMR (75.4 MHz, CDCl3): δ = 54.4 (OCH3), 113.2, 114.1 (CH), 115.2 (q, J C–F = 320 Hz, CF3), 120.3 (C), 121.5 (CH), 122.8 (C), 123.2, 125.7, 127.5 (CH), 129.7 (C), 130.1 (CH), 131.4, 145.7, 148.3, 152.3, 155.6 (C), 159.3 (CH), 174.5 (CO). 19F NMR (282.4 MHz CDCl3): δ = –72.75 (3 F, CF3). GC–MS (EI, 70 eV): m/z (%) = 476 (100) [M]+, 344 (24), 343 (35), 315 (13). HRMS (EI, 70 eV): m/z [M]+ calcd for C23H15O6F3S: 476.05359; found: 476.05270.
  • 23 7-(3,5-Dimethylphenyl)-3-(4′-methoxybiphenyl-4-yl)-4H-chromen-4-one (6b) The product was obtained from the reaction of 2 (70 mg, 0.135 mmol ), 3g (25 mg, 0.162 mmol), Pd(PPh3)4 (5 mg, 0.004327 mmol, 3 mol%) and K2CO3 (2 mL, 2 M) in DMF (4 mL) at 85 °C for 6 h, followed by a subsequent reaction with 3a (25 mg, 0.162 mmol), Pd(PPh3)4 (5 mg, 0.004327 mmol, 3 mol%) and K2CO3 (2 mL, 2 M) in DMF (4 mL) at 130 °C for 10 h. Yield: 47 mg (81%); white solid; mp 152–154 °C. IR (KBr) = 3059, 3053, 3012, 2958, 2916, 2849 (w), 1902, 1730 (w), 1641, 1620, 1606, 1578, 1554, 1518 (m) cm–1. 1H NMR (300 MHz, CDCl3): δ = 2.53 (s, 6 H, 2 × CH3), 3.82 (s, 3 H, OCH3), 6.97 (d, J = 8.5 Hz, 4 H, ArH), 7.11 (s, 2 H, ArH), 7.50–7.52 (m, 6 H, ArH), 7.93 (s, 2 H, ArH), 8.20 (d, J = 8.3 Hz, 1 H, CH=). 13C NMR (75.4 MHz, CDCl3): δ = 22.4 (2 × CH3), 50.8 (OCH3), 113.5, 114.1, 121.7, 122.6 (CH), 123.4, 124.4 (C), 125.8, 126.1, 126.5, 126.6, 127.2, 127.8 (CH), 128.5, 128.6, 128.8, 129.2, 135.3, 135.7, 136.6, 152.1 (C), 155.8 (CH), 163.8 (CO). GC–MS (EI, 70 eV): m/z (%) = 432 (100) [M]+, 341 (22), 323 (30), 315 (23), 133 (10). HRMS (EI, 70 eV): m/z [M]+ calcd for C30H24O3: 432.17200; found: 432.17244.