Synlett 2015; 26(20): 2858-2862
DOI: 10.1055/s-0035-1560701
letter
© Georg Thieme Verlag Stuttgart · New York

Highly Enantio- and Diastereoselective l-Proline Derived Acetylglucose Amide Catalyzed Aldol Reaction of Ketones to Aldehydes under Solvent-Free Conditions

Xiaoyu Han*
a   Zhejiang Provincial Key Laboratory for Chemical &Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, No. 318 Liuhe Road, Hangzhou, 310023, P. R. of China   Email: chemhanxy@zust.edu.cn
,
Yongjiang Wang
a   Zhejiang Provincial Key Laboratory for Chemical &Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, No. 318 Liuhe Road, Hangzhou, 310023, P. R. of China   Email: chemhanxy@zust.edu.cn
,
Xikun Gai
a   Zhejiang Provincial Key Laboratory for Chemical &Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, No. 318 Liuhe Road, Hangzhou, 310023, P. R. of China   Email: chemhanxy@zust.edu.cn
,
Xiaofei Zeng*
b   College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. of China   Email: chemzxf@hznu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 12 July 2015

Accepted after revision: 05 September 2015

Publication Date:
21 October 2015 (online)


Abstract

A novel organocatalyst was developed from d-glucosamine and l-proline, which was shown to catalyze the direct aldol reaction of ketones with aldehydes in a highly diastereoselective and enantioselective manner under solvent-free conditions. The presence of 10 mol% catalyst could promote the reaction effectively, affording the desired aldol products in high yields (70–99%) and excellent selectivities (up to >99:1 dr and up to >99% ee).

Supporting Information

 
  • References and Notes

    • 1a Trost BM, Brindle CS. Chem. Soc. Rev. 2010; 39: 1600
    • 1b Bisai V, Bisai A, Singh VK. Tetrahedron 2012; 68: 4541
    • 1c Mlynarski J, Gut B. Chem. Soc. Rev. 2012; 41: 587
    • 1d Casiraghi G, Zanardi F, Appendino G, Rassu G. Chem. Rev. 2000; 100: 1929
    • 1e Machajewski TD, Wong CH. Angew. Chem. Int. Ed. 2000; 39: 1352
    • 1f Mukaiyama T. Angew. Chem. Int. Ed. 2004; 43: 5590
    • 1g Zhang H, Zhang S, Liu L, Luo G, Duan W, Wang W. J. Org. Chem. 2010; 75: 368
    • 1h Hara N, Tamura R, Funahashi Y, Nakamura S. Org. Lett. 2011; 13: 1662

      For reviews, see:
    • 2a Gröger H, Vogl EM, Shibasaki M. Chem. Eur. J. 1998; 4: 1137
    • 2b Nelson SG. Tetrahedron: Asymmetry 1998; 9: 357
    • 2c Carreira E. M. In Comprehensive Asymmetric Catalysis, Vol. 3; Jacobsen, E. N.; Platz, A.; Yamamoto, H.; Eds.; Springer: Heidelberg, 1999, 997.
    • 2d Mahrwald R. Chem. Rev. 1999; 99: 1095
    • 2e Machajewski TD, Wong C.-H. Angew. Chem. Int. Ed. 2000; 39: 1352 ; Angew. Chem. 2000, 112, 1406
    • 2f Johnson JS, Evans DA. Acc. Chem. Res. 2000; 33: 325
    • 2g Denmark SE, Stavenger RA. Acc. Chem. Res. 2000; 33: 432
    • 2h Palomo C, Oiarbide M, García JM. Chem. Soc. Rev. 2004; 33: 65
    • 2i Modern Aldol Reaction . Vol. 1 and 2. Mahrwald R. Wiley-VCH; Weinheim: 2004
    • 3a List B, Lerner RA, Barbas CF. III. J. Am. Chem. Soc. 2000; 122: 2395
    • 3b Notz W, List B. J. Am. Chem. Soc. 2000; 122: 7386
    • 3c Bahmanyar S, Houk KN, Martin HJ, List B. J. Am. Chem. Soc. 2003; 125: 2475
    • 3d Sakthivel K, Notz W, Bui T, Barbas CF. III. J. Am. Chem. Soc. 2001; 123: 5260
    • 3e Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471

      For selected reviews on the aldol and other reactions using asymmetric organocatalysis, see:
    • 4a Guillena G, Najera C, Ramón DJ. Tetrahedron: Asymmetry 2007; 18: 2249
    • 4b Seayad J, List B. Org. Biomol. Chem. 2005; 3: 719
    • 4c Notz W, Tanaka F, Barbas CF. III. Acc. Chem. Res. 2004; 37: 580
    • 4d List B. Acc. Chem. Res. 2004; 37: 548
    • 4e Allemann C, Gordillo R, Clemente FR, Cheong PH.-Y, Houk KN. Acc. Chem. Res. 2004; 37: 558
    • 4f Dondoni A, Massi A. Angew. Chem. Int. Ed. 2008; 47: 4638
    • 4g Trost BM, Brindle CS. Chem. Soc. Rev. 2010; 39: 1600
    • 4h Bisai V, Bisai A, Singh VK. Tetrahedron 2012; 68: 4541
    • 4i Modern Methods in Stereoselective Aldol Reactions. Mahrwald R. Wiley-VCH; Weinheim: 2013
    • 4j Hernández JG, Juaristi E. Chem. Commun. 2012; 48: 5396
    • 4k Bisai V, Bisai A, Singh VK. Tetrahedron 2012; 68: 4541
    • 5a Agarwal J, Peddinti RK. Eur. J. Org. Chem. 2012; 6390
    • 5b Fotaras S, Kokotos CG, Kokotos G. Org. Biomol. Chem. 2012; 10: 5613
    • 5c Pedrosa R, Andrés JM, Gamarra A, Manzano R, Pérez-López C. Tetrahedron 2013; 69: 10811
    • 5d Revelou P, Kokotos CG, Moutevelis-Minakakis P. Tetrahedron 2012; 68: 8732
    • 5e Tanimura Y, Yasunaga K, Ishimaru K. Eur. J. Org. Chem. 2013; 6535
    • 5f Gioia C, Ricci A, Bernardi L, Bourahla K, Tanchoux N, Robitzer M, Quignard F. Eur. J. Org. Chem. 2013; 588
    • 5g Hayashi Y, Aratake S, Okano T, Takahashi J, Sumiya T, Shoji M. Angew. Chem. Int. Ed. 2006; 45: 5527
    • 5h Huang JM, Zhang XT, Armstrong DW. Angew. Chem. Int. Ed. 2007; 46: 9073
    • 5i Siyutkin DE, Kucherenko AS, Struchkova MI, Zlotin SG. Tetrahedron Lett. 2008; 49: 1212
    • 5j Zhang SP, Fu XK, Fu SD, Pan JF. Catal. Commun. 2008; 10: 401
    • 5k Chimni SS, Singh S, Mahajan D. Tetrahedron: Asymmetry 2008; 19: 2276
    • 5l Zhang SP, Fu XK, Fu SD. Tetrahedron Lett. 2009; 50: 1173
    • 5m Sagamanova IK, Sayalero S, Martínez-Arranz S, Albéniz AC, Pericàs MA. Catal. Sci. Technol. 2015; 5: 754
    • 5n Kumar TP, Vavle NC, Patro V, Haribabu K. Tetrahedron: Asymmetry 2014; 25: 457
    • 5o Guan Z, Luo Y, Zhang B.-Q, Heinen K, Yang DC, He Y.-H. Tetrahedron: Asymmetry 2014; 25: 802
    • 5p Liu K, Zhang G. Tetrahedron Lett. 2015; 56: 243
    • 5q Jiang Z, Liang Z, Wu X, Lu Y. Chem. Commun. 2006; 2801
    • 5r Wu X, Jiang Z, Shen H.-M, Lu Y. Adv. Synth. Catal. 2007; 349: 812
    • 5s Hernández JG, Juaristi E. Tetrahedron 2011; 67: 6953

      For examples of direct aldol reactions using organocatalysts under solvent-free conditions, see:
    • 6a Hayashi Y, Aratake S, Itoh T, Okano T, Sumiya T, Shoji M. Chem. Commun. 2007; 957
    • 6b Guillena G, Hita MC, Nájera C, Viózquez SF. Tetrahedron: Asymmetry 2007; 18: 2300
    • 6c Rodríguez B, Bruckmann A, Bolm C. Chem. Eur. J. 2007; 13: 4710
    • 6d Yan J, Wang L. Synthesis 2008; 2065
    • 6e Almaşi D, Alonso DA, Nájera C. Adv. Synth. Catal. 2008; 350: 2467
    • 6f Guillena G, Nájera C, Viózquez SF. Synlett 2008; 3031
    • 6g Guillena G, Hita MC, Nájera C, Viózquez SF. J. Org. Chem. 2008; 73: 5933
    • 6h Almaşi D, Alonso DA, Nájera C. Adv. Synth. Catal. 2009; 351: 1123
    • 6i Worch C, Bolm C. Synlett 2009; 2425
    • 6j Bradshaw B, Etxebarría-Jardi G, Bonjoch J, Viózquez SF, Guillena G, Nájera C. Adv. Synth. Catal. 2009; 351: 2482
    • 6k Agarwal J, Peddinti RK. Tetrahedron: Asymmetry 2010; 21: 1906
    • 6l Hernández JG, Juaristi E. J. Org. Chem. 2011; 76: 1464
    • 6m Machuca E, Rojas Y, Juaristi E. Asian J. Org. Chem. 2015; 4: 46
    • 6n Hernández JG, García-López V, Juaristi E. Tetrahedron 2012; 68: 92
    • 6o Machuca E, Juaristi E. Tetrahedron Lett. 2015; 56: 1144
    • 6p Martínez-Castañeda Á, Poladura B, Rodríguez-Solla H, Concellón C, Amo V. Org. Lett. 2011; 13: 3032
    • 6q Martínez-Castañeda Á, Poladura B, Rodríguez-Solla H, Concellón C, Amo V. Chem. Eur. J. 2012; 18: 5188
    • 6r Zhang F, Li C, Qi C. Tetrahedron: Asymmetry 2013; 24: 380
    • 6s Bañón-Caballero A, Guillena G, Nájera C, Faggi E, Sebastián RM, Vallribera A. Tetrahedron 2013; 69: 1307
    • 6t Wan W, Gao W, Ma G, Ma L, Wang F, Wang J, Jiang H, Zhu S, Hao J. RSC Adv. 2014; 4: 26563
    • 7a Dwek RA. Chem. Rev. 1996; 96: 683
    • 7b Zachara NE, Hart GW. Chem. Rev. 2002; 102: 431
    • 7c D’Almeida A, Ionata M, Tran V, Tellier C, Dion M, Rabiller C. Tetrahedron: Asymmetry 2009; 20: 1243
    • 7d Frontana-Uribe BA, Escárcega-Bobadilla MV, Juárez-Lagunas J, Toscano RA, García de la Mora GA, Salmón M. Synthesis 2009; 980
    • 7e Ran C.-Z, Pantazopoulos P, Medarova Z, Moore A. Angew. Chem. Int. Ed. 2007; 46: 8998
    • 7f Cassaro RF, de Oliveira LC, Gariani RA, do Nascimento CA. O, Bazito RC. Green Process Synth. 2013; 2: 43
    • 8a Tsutsui A, Takeda H, Kimura M, Fjimoto T, Machinami T. Tetrahedron Lett. 2007; 48: 5213
    • 8b Miura D, Fujimoto T, Tsutsui A, Machinami T. Synlett 2013; 24: 1501
  • 9 Catalytic Asymmetric Aldol Reaction; Typical Procedure: Cyclohexanone (0.2 mmol, 2.0 equiv), aldehyde (0.1 mmol, 1.0 equiv), and catalyst 1 (0.01 mmol, 10 mol%) were mixed together at room temperature. The mixture was stirred at room temperature until the aldehyde was consumed (reaction monitored by TLC). The mixture was diluted with CH2Cl2 (0.5 mL), and then purified directly by column chromatography on silica gel to give the desired optically active aldol product. Analytical data of compound 4b are given as a representative compound (see the Supporting Information data on all products). Yield: 0.0241 g (96%); yellow solid; [α] d 20 –29 (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.22–8.16 (m, 2 H), 7.68 (d, J = 7.4 Hz, 1 H), 7.55 (d, J = 7.4 Hz, 1 H), 4.91 (dd, J = 2.7, 8.2 Hz, 1 H), 4.15 (d, J = 2.8 Hz, 1 H), 2.66–2.62 (m, 1 H), 2.53–2.38 (m, 2 H), 2.14–2.11 (m, 1 H), 1.86–1.57 (m, 3 H), 1.42–1.38 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 215.0, 148.3, 143.2, 133.2, 129.3, 122.9, 122.0, 74.0, 57.1, 42.7, 30.7, 27.6, 24.6. HRMS: m/z [M+] calcd for C13H15NO4: 249.1001; found: 249.1099.