Synlett 2016; 27(05): 799-804
DOI: 10.1055/s-0035-1560991
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Optical Properties of 1,4- and 1,2-Dicyanodibenzodioxins Possessing Donor–π-Acceptor Architecture

Subhadeep Banerjee*
a   Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, NH-17B Bypass, Zuarinagar, Goa 403726, India   Email: subhadeepb@goa.bits-pilani.ac.in
,
Anjan Chattopadhyay
a   Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, NH-17B Bypass, Zuarinagar, Goa 403726, India   Email: subhadeepb@goa.bits-pilani.ac.in
,
Praveen Saini
a   Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, NH-17B Bypass, Zuarinagar, Goa 403726, India   Email: subhadeepb@goa.bits-pilani.ac.in
,
Keisham Sarjit Singh
b   Bioorganic Chemistry Laboratory, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
› Author Affiliations
Further Information

Publication History

Received: 02 September 2015

Accepted after revision: 20 October 2015

Publication Date:
09 December 2015 (online)


Abstract

The synthesis and photophysical characterization of isomeric 1,4-and 1,2-dicyanodibenzodioxins is reported. The molecules exhibit optical spectra in the visible region and possess large (ca. 100 nm) Stokes shifts. The synthetic protocol is simple and high-yielding and the presence of replaceable fluorine atoms on the activated dibenzodioxin moiety provides the opportunity for further transformation towards molecules bearing push–pull architecture.

Supporting Information

 
  • References and Notes

    • 1a Sin W, Greco NJ, Tor Y. Chem. Rev. 2010; 110: 2579
    • 1b Quian G, Wang ZY. Chem. Asian J. 2010; 5: 1006
  • 2 Fabian J, Nakazumi H, Matsuoka M. Chem. Rev. 1992; 92: 1197
  • 3 Jones RN. Chem. Rev. 1947; 41: 353
  • 4 Zade SS, Bendikov M. Angew. Chem. Int. Ed. 2010; 49: 4012
    • 5a George C, Strekowski RS, Kleffmann J, Stemmler K, Ammann M. Faraday Discuss. 2005; 130: 195
    • 5b Thamatam R, Skraba SL, Johnson RP. Chem. Commun. 2013; 49: 9122
  • 6 Bureš F. RSC Adv. 2014; 4: 58826
  • 7 Takahashi T, Kitamura M, Shen B, Nakajima K. J. Am. Chem. Soc. 2000; 122: 12876
  • 8 Bartzatt R. J. Biochem. Biophys. Methods 2001; 47: 189
  • 9 Weber G, Fay J, Farris FJ. Biochemistry 1979; 18: 3075
  • 10 Takagi K, Matsuoka M, Kubo Y, Kitaol T. Dyes Pigm. 1985; 6: 75
  • 11 Wang J, Khanamiryan AK, Leznoff CC. J. Porphyrins Phthalocyanines 2004; 8: 1293
  • 12 Banerjee S, Chattopadhyay A, Banerjee A, Haridas H, Saini P, Das M, Majik MS, Maurya YK. Bioorg. Med. Chem. Lett. 2015; 25: 753
  • 13 Palmer BD, Rewcastle GW, Atwell GJ, Baguley BC, Denny WA. J. Med. Chem. 1988; 31: 107
  • 14 Lee HH, Palmer BD, Boyd M, Baguley BC, Denny WA. J. Med. Chem. 1992; 35: 258
  • 15 Hewage N, Yang B, Agrios AG, Brückner C. Dyes Pigm. 2015; 121: 159
  • 16 General Procedure To a solution of 8 (55 mg, 0.50 mmol) in MeCN (10 mL) was added NaH (60%, 48 mg, 1.2 mmol), the mixture allowed to stir for 30 s at r.t., and then phthalonitrile 9/10 (100 mg, 0.50 mmol) was added. A deep blue coloration developed in the reaction flask, and TLC monitoring (20% EtOAc–PE) after 10 min showed complete consumption of both starting materials and appearance of a new strongly UV-active nonpolar spot. The reaction was quenched with cold H2O (30 mL), extracted into CH2Cl2 (20 mL), the organic layer repeatedly washed with brine (5 × 15 mL), and dried over Na2SO4. Filtration and evaporation to dryness yielded the desired products 11 and 12. Analytical Data for Compound 11 Pale yellow powder; 80% yield. 1H NMR (300 MHz, DMSO-d 6): δ = 7.20–7.12 (m, 4 H). 13C NMR (75 MHz, DMSO-d 6): δ = 147.13, 146.91, 143.74, 143.53, 141.80, 139.42, 126.85, 117.33, 109.01, 96.04, 95.92, 95.77. UV-vis (DMSO): λmax (log ε) = 262 (4.35), 387 (4.20) nm. HRMS (ESI+): m/z calcd for C14H4F2N2O2Na [M + Na]: 293.0139; found: 293.0152.
  • 17 Dolbier WR. Jr. Guide to Fluorine NMR for Organic Chemists . Wiley; Hoboken: 2009
  • 18 Analytical Data for Compound 12 Off-white powder; 93% yield. 1H NMR (300 MHz, CDCl3): δ = 7.11–7.03 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 151.31, 151.14, 150.26, 150.21, 146.77, 144.00, 143.80, 143.62, 140.50, 140.30, 139.33, 139.23, 138.87, 126.62, 126.39, 117.31, 117.04, 109.96, 109.30, 99.07, 98.98, 98.89, 98.21, 98.69, 98.43, 98.03. UV-vis (DMSO): λmax (log ε) = 261 (4.53), 314 (sh), 350 (3.99) nm. HRMS (ESI+): m/z calcd for C14H4F2N2O2Na [M + Na]: 293.0139; found: 293.0169.
  • 19 Matsui M, Suzuki M, Nunome I, Kubota Y, Funabiki K, Shiro M, Matsumoto S, Shiozaki H. Tetrahedron 2008; 64: 8830
  • 20 Synthesis of Compound 13 To a solution of 11 (40 mg, 0.14 mmol) in DMF (10 mL) were added Et2NH (0.18 mL, 1.77 mmol) and Et3N (0.24 mL, 1.77 mmol), and the mixture was stirred at r.t. for 48 h, monitored by TLC (SiO2 gel plate, 20% EtOAc–PE) until complete consumption of starting material. The reaction mixture was poured into H2O (50 mL), extracted with CH2Cl2 (30 mL), the organic layer washed with brine (10 × 10 mL), dried over Na2SO4, filtered, and concentrated using a rotary evaporator. Compound 13 was isolated by column chromatography purification (SiO2 gel, eluent 5% EtOAc–PE) as a pale yellow powder; yield 30 mg (63%). 1H NMR (300 MHz, CDCl3): δ = 7.05–7.04 (m, 4 H), 3.28–3.21 (q, 3J = 7.2 Hz, 4 H), 1.12–1.08 (t, 3J = 6.9 Hz, 6 H). 13C NMR (75 MHz, CDCl3): δ = 156.93, 153.22, 141.32, 140.46, 140.40, 139.94, 139.69, 136.21, 136.04, 125.89, 125.75, 117.05, 116.90, 111.80, 111.74, 108.84, 106.57, 106.47, 95.81, 95.53, 47.65, 47.60, 13.31. UV-vis (DMSO): λmax (log ε) = 261 (4.38), 396 (4.08) ppm. HRMS (ESI+): m/z calcd for C18H5FN3O2 [M + H]: 324.1148; found: 324.1172.
  • 21 Hynes JB, Pathak A, Panos CH, Okeke CC. J. Heterocycl. Chem. 1988; 25: 1173
  • 22 Synthesis of Compound 14 To a solution of 11 (60 mg, 0.22 mmol) in MeCN (10 mL) was added NaOMe (60 mg, 1.1 mmol) at r.t. The mixture was stirred for 1 h, monitored by TLC (EtOAc–PE) for consumption of starting material. The reaction mixture was quenched with H2O (30 mL), extracted with CH2Cl2 (50 mL), the organic layer washed with brine (10 × 10 mL), dried over Na2SO4, filtered, and concentrated using a rotary evaporator. Compound 14 was isolated by column chromatography purification (SiO2 gel, eluent 10% EtOAc–PE) as a pale green powder; yield: 31 mg (50%). 1H NMR (300 MHz, CDCl3): δ = 7.05–7.03 (m, 4 H), 4.12–4.11 (m, 3 H). 13C NMR (75 MHz, CDCl3): δ = 151.00, 147.60, 144.30, 144.15, 141.20, 139.62, 139.56, 126.00, 117.05, 116.96, 109.84, 109.78, 108.37, 96.53, 96.27, 62.47, 62.38. UV/Vis (DMSO): λmax (log ε) = 262 (3.63), 390 (3.53) nm. HRMS (ESI+): m/z calcd for C1H7FN2O3Na [M + Na]: 305.0338; found: 305.0328.
  • 23 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision D.01. Gaussian, Inc; Wallingford: 2009
  • 24 Zhang X.-F, Li X. J. Luminescence 2011; 131: 2263