Synlett 2016; 27(08): 1269-1273
DOI: 10.1055/s-0035-1561563
letter
© Georg Thieme Verlag Stuttgart · New York

Selective Preparation of Xanthones from 2-Bromofluorobenzenes and Salicylaldehydes via Palladium-Catalyzed Acylation–SNAr Approach

Chaoren Shen
Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany   Email: xiao-feng.wu@catalysis.de
,
Xiao-Feng Wu*
Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany   Email: xiao-feng.wu@catalysis.de
› Author Affiliations
Further Information

Publication History

Received: 25 November 2015

Accepted: 12 January 2016

Publication Date:
04 February 2016 (online)


Abstract

A regioselective pathway for the preparation of xanthones from 2-bromofluorobenzenes and salicylaldehydes has been developed. The reaction proceeded through palladium-catalyzed acylation–SNAr sequence. Good to moderate yields of the desired xanthones were prepared in one step. Based on the results of control experiments, a possible reaction mechanism has been proposed.

Supporting Information

 
  • References and Notes

    • 1a Roberts JC. Chem. Rev. 1961; 61: 591
    • 1b Masters K.-S, Bräse S. Chem. Rev. 2012; 112: 3717
  • 2 Lesch B, Bräse S. Angew. Chem. Int. Ed. 2004; 43: 115
    • 3a Steiner LF, Summerland SA. J. Econ. Entomol. 1943; 36: 435
    • 3b Engel MG, Engel FL. J. Biol. Chem. 1947; 167: 535
    • 3c Obot IB, Obi-Egbedib NO. Curr. Appl. Phys. 2011; 11: 382

      For selected recent examples, see:
    • 4a Palmer BD, Henare K, Woon S.-T, Sutherland R, Reddy C, Wang L.-CS, Kieda C, Ching L.-M. J. Med. Chem. 2007; 50: 3757
    • 4b Omolo JJ, Johnson MM, van Vuuren SF, de Koning CB. Bioorg. Med. Chem. Lett. 2011; 21: 7085
    • 4c Guo N, Liu J, Qin L, Jiang D, You X, Lu K, Teng Y.-O, Yu P. J. Asian Nat. Prod. Res. 2015; 17: 377
  • 5 Sousa E, Pinto MM. Curr. Med. Chem. 2005; 12: 2447
  • 6 Holleman AF. Org. Synth. 1927; 7: 84

    • For some recent representative synthetic pathways of xanthones, see:
    • 7a Zhao J, Larock RC. Org. Lett. 2005; 7: 4273
    • 7b Zhao J, Larock RC. J. Org. Chem. 2007; 72: 583
    • 7c Wertz S, Leifert D, Studer A. Org. Lett. 2013; 15: 928
    • 7d Yang J, Dong C, Li H, Li H, Li Y. Chin. Sci. Bull. 2012; 57: 2364
    • 7e Wang P, Rao H, Hua R, Li C.-J. Org. Lett. 2012; 14: 902
    • 7f Manna SK, Lavanya S, Manda K, Panda G. Tetrahedron Lett. 2014; 55: 5759
    • 7g Zhang H, Shi R, Gan P, Liu C, Ding A, Wang Q, Lei A. Angew. Chem. Int. Ed. 2012; 51: 5204
    • 7h Xu Y, Zhou J, Zhang C, Chen K, Zhang T, Du Z. Tetrahedron Lett. 2014; 55: 6432
    • 7i Genovese S, Fiorito S, Specchiulli MC, Taddeo VA, Epifano F. Tetrahedron Lett. 2015; 56: 847
    • 7j Hu J, Adogla EA, Ju Y, Fan D, Wang Q. Chem. Commun. 2012; 48: 11256
    • 7k Menéndez CA, Nador F, Radivoy G, Gerbino DC. Org. Lett. 2014; 16: 2846
    • 7l Wang S, Xie K, Tan Z, An X, Zhou X, Guo C.-C, Peng Z. Chem. Commun. 2009; 6469
    • 7m Rao H, Ma X, Liu Q, Li Z, Cao S, Li C.-J. Adv. Synth. Catal. 2013; 355: 2191
    • 7n Suzuki Y, Fukuta Y, Ota S, Kamiya M, Sato M. J. Org. Chem. 2011; 76: 3960
    • 7o Jiang N, Li S.-Y, Xie S.-S, Yao H, Sun H, Wang X.-B, Kong L.-Y. RSC Adv. 2014; 4: 63632
    • 7p Barbero N, SanMartin R, Domínguez E. Green Chem. 2009; 11: 830
    • 7q Hintermann L, Masuo R, Suzuki K. Org. Lett. 2008; 10: 4859
    • 7r Woydziak ZR, Fu L, Peterson BR. J. Org. Chem. 2012; 77: 473
    • 7s Johnson MM, Naidoo JM, Fernandes MA, Mmutlane EM, van Otterlo WA. L, de Koning CB. J. Org. Chem. 2010; 75: 8701
    • 8a Satoh T, Itaya T, Miura M, Nomura M. Chem. Lett. 1996; 823
    • 8b Álvarez-Bercedo P, Flores-Gaspar A, Correa A, Martin R. J. Am. Chem. Soc. 2010; 132: 466
    • 8c Solé D, Mariani F. J. Org. Chem. 2013; 78: 8136
    • 8d Nowrouzi N, Motevalli S, Tarokh D. J. Mol. Catal. A: Chem. 2015; 396: 224
    • 8e Solé D, Mariani F, Fernández I. Eur. J. Org. Chem. 2015; 3935
  • 9 General Procedure for the Synthesis of Xanthone To an oven-dried 25 mL Schlenk tube containing a stirring bar was added Pd(OAc)2 (4.5 mg, 0.02 mmol), n-BuPAd2 (15.7 mg, 0.44 mmol), 2-bromofluorobenzene (0.50 mmol), salicylaldehyde (0.50 mmol), K2CO3 (1.0 mmol). The Schlenk tube was vacuumed and then purged with argon before DMF (2.0 mL) was injected using a syringe. Afterwards the Schlenk tube in the ice bath was degassed by evacuation and backfilling with argon three times. The reaction mixture was then stirred for 12 h at 120 °C. After the reaction was complete, the reaction mixture was diluted with H2O (5 mL), extracted with EtOAc (3 × 10 mL) and dried with anhydrous Na2SO4. After filtration and addition of silica gel into the solution, the organic solvent was reduced evaporated. The crude product was purified by column chromatography using EtOAc–n-pentane. Xanthenone (3a) White solid; yield: 74.5 mg (76%). 1H NMR (300 MHz, CDCl3): δ = 8.35 (2 H, ddd, J = 8.0, 1.7, 0.5 Hz), 7.73 (2 H, ddd, J = 8.7, 7.1, 1.8 Hz), 7.52–7.48 (2 H, m), 7.38 (2 H, ddd, J = 8.1, 7.1, 1.1 Hz). 13C NMR (75 MHz, CDCl3): δ = 177.27, 156.20, 134.86, 126.77, 123.94, 121.88, 118.02. GC–MS (EI, 70 eV): m/z (%) = 196 (100), 168 (75), 139 (58), 113 (6), 92 (8), 74 (11), 63 (20). HRMS (EI): m/z calcd for C13H8O2 [M]+: 196.05188; found: 196.05185.
    • 10a Wang L, Lu W. Org. Lett. 2009; 11: 1079
    • 10b Li C.-L, Qi X, Wu X.-F. J. Mol. Catal. A: Chem. 2015; 406: 94
    • 11a Stephan MS, Teunissen AJ. J. M, Verzijl GK. M, de Vries JG. Angew. Chem. Int. Ed. 1998; 37: 662
    • 11b Jutand A, Négri S, de Vries JG. Eur. J. Inorg. Chem. 2002; 1711
  • 12 Ackerman LK. G, Lovell MM, Weix DJ. Nature 2015; 524: 454