Synlett 2017; 28(11): 1336-1340
DOI: 10.1055/s-0036-1558970
letter
© Georg Thieme Verlag Stuttgart · New York

Mechanochemical Grinding Diels–Alder Reaction: Highly Efficient and Rapid Access to Bi-, Tri-, and Tetracyclic Systems

Jyoti Agarwal
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India   Email: rkpedfcy@iitr.ac.in   Email: ramakpeddinti@gmail.com
,
Rashmi Rani
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India   Email: rkpedfcy@iitr.ac.in   Email: ramakpeddinti@gmail.com
,
Rama Krishna Peddinti*
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India   Email: rkpedfcy@iitr.ac.in   Email: ramakpeddinti@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 07 January 2017

Accepted after revision: 22 February 2017

Publication Date:
15 March 2017 (online)


Abstract

Grinding of various electron-deficient dienophiles with diverse dienes in a pestle and mortar for 1–15 minutes afforded the corresponding Diels–Alder adducts in quantitative yields under catalyst-free and solvent-free conditions, without the necessity for any purification steps.

Supporting Information

 
  • References and notes


    • For selected reviews and papers, see:
    • 1a Friščić T, Jones W. Cryst. Growth Des. 2009; 9: 1621-1621
    • 1b Friščić T. J. Mater. Chem. 2010; 20: 7599-7599
    • 1c Braga D, D’Addario D, Giaffreda SL, Maini L, Polito M, Grepioni F. Top. Curr. Chem. 2005; 254: 71-71
    • 1d Boldyrev VV, Tkáčová K. J. Mater. Synth. Process. 2000; 8: 121-121
    • 1e Wang G.-W. Chem. Soc. Rev. 2013; 42: 7668-7668
    • 1f James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris KD. M, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC. Chem. Soc. Rev. 2012; 41: 413-413
    • 1g Tanaka S, Kida K, Nagaoka T, Ota T, Miyake Y. Chem. Commun. 2013; 49: 7884-7884
    • 1h Harris KD. M. Nat. Chem. 2013; 5: 12-12
    • 1i Zhu S.-E, Li F, Wang G.-W. Chem. Soc. Rev. 2013; 42: 7535-7535
    • 1j Biswal BP, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. J. Am. Chem. Soc. 2013; 135: 5328-5328
    • 1k Dou H, Nie P, MacFarlane DR. J. Mater. Chem. A 2014; 2: 19536-19536
    • 1l Klimakow M, Klobes P, Thünemann AF, Rademann K, Emmerling F. Chem. Mater. 2010; 22: 5216-5216
    • 1m Gorrasi G, Sorrentino A. Green Chem. 2015; 17: 2610-2610
    • 2a Jones W, Motherwell WD. S, Trask AV. MRS Bull. 2006; 31: 875-875
    • 2b Trask AV, Motherwell WD. S, Jones W. Cryst. Growth Des. 2005; 5: 1013-1013
    • 2c Trask AV, Motherwell WD. S, Jones W. Int. J. Pharm. (Amsterdam, Neth.) 2006; 320: 114-114
    • 2d Aakeröy CB, Fasulo ME, Desper J. Mol. Pharmaceutics 2007; 4: 317-317
    • 2e Rodríguez-Hornedo N. Mol. Pharmaceutics 2007; 4: 299-299
    • 2f Childs SL, Chyall LJ, Dunlap JT, Smolenskaya VN, Stahly BC, Stahly GP. J. Am. Chem. Soc. 2004; 126: 13335-13335
  • 3 Sokolov N, Friščić T, MacGillivray LR. J. Am. Chem. Soc. 2006; 128: 2806-2806
    • 4a Etter MC, Frankenbach GM, Adsmond DA. Mol. Cryst. Liq. Cryst. 1990; 187: 25-25
    • 4b Smolka T, Sustmann R, Boese R. J. Prakt. Chem. 1999; 341: 378-378
    • 4c Morimoto M, Kobatake S, Irie M. Chem. Commun. 2008; 335-335
    • 5a Baird C. Environmental Chemistry . W. H. Freeman; New York: 1999. 2nd ed.
    • 5b Green Chemical Syntheses and Processes, ACS Symposium Series 767. Anastas P, Heine LG, Williamson TC. American Chemical Society; Washington DC: 2000
    • 5c Matlack AS. Introduction to Green Chemistry . Marcel Dekker; New York: 2001
    • 5d Lancaster M. Green Chemistry: An Introductory Text . Royal Society of Chemistry; Cambridge: 2002
    • 6a Anastas PT, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; Oxford: 1998
    • 6b Lancaster M. In Handbook of Green Chemistry and Technology . Clark JH, Macquarrie DJ. Blackwell Science; Oxford: 2002. Chap. 2, 10
    • 6c Bruckmann A, Krebs A, Bolm C. Green Chem. 2008; 10: 1131-1131
    • 6d Horváth IT. Green Chem. 2008; 10: 1024-1024
    • 6e Handbook of Green Chemistry . Crabtree RH, Anastas PT. Wiley-VCH; Weinheim: 2009
    • 7a Tanaka K. Solvent-Free Organic Synthesis . Wiley-VCH; Weinheim: 2009
    • 7b Marvaniya HM, Modi KN, Sen DJ. Int. J. Drug Develop. Res. 2011; 3: 34-34
    • 8a Fringuelli F, Taticchi A. The Diels–Alder Reaction: Selected Practical Methods . Wiley; Chichester: 2009
    • 8b Cycloaddition Reactions in Organic Synthesis . Kobayashi S, Jørgensen KA. Wiley-VCH; Weinheim: 2002
    • 9a Takao K, Munakata R, Tadano K.-i. Chem. Rev. 2005; 105: 4779-4779
    • 9b Samarakoon T, Hanson PR. Chemtracts 2007; 20: 220-220
    • 9c Juhl M, Tanner D. Chem. Soc. Rev. 2009; 38: 2983-2983
    • 10a Abdelkafi H, Evanno L, Deville A, Dubost L, Chiaroni A, Nay B. Eur. J. Org. Chem. 2011; 2789-2789
    • 10b Bautista R, Bernal P, Montiel LE, Tamariz J. Synthesis 2011; 929-929
    • 11a de Mier-Vinué J, Gay M, Montaña ÁM, Sáez R.-I, Moreno V, Kasparkova J, Vrana O, Heringova P, Brabec V, Boccarelli A, Coluccia M, Natile G. J. Med. Chem. 2008; 51: 424-424
    • 11b Lu H.-H, Pronin SV, Koch YA, Meister S, Winzeler EA, Shenvi RA. J. Am. Chem. Soc. 2016; 138: 7268-7268
    • 11c Pronin SV, Shenvi RA. J. Am. Chem. Soc. 2012; 134: 19604-19604
    • 11d Wan CY, Deng J, Liu H, Bian M, Li A. Sci. Chin.: Chem. 2014; 57: 926-926
    • 11e Dhambri S, Mohammad S, Van Buu ON, Galvani G, Meyer Y, Lannou M.-I, Sorin G, Ardisson J. Nat. Prod. Rep. 2015; 32: 841-841
    • 11f El-Desoky AH, Kato H, Kagiyama I, Hitora Y, Losung F, Mangindaan RE. P, de Voogd NJ, Tsukamoto S. J. Nat. Prod. 2017; 80: 90-90
    • 11g Iovine V, Benni I, Sabia R, D’Acquarica I, Fabrizi G, Botta B, Calcaterra A. J. Nat. Prod. 2016; 79: 2495-2495
  • 12 Silvero G, Arévalo MJ, Bravo JL, Ávalos M, Jiménez JL, López I. Tetrahedron 2005; 61: 7105-7105
  • 13 López I, Silvero G, Arévalo MJ, Babiano R, Palacios JC, Bravo JL. Tetrahedron 2007; 63: 2901-2901
  • 14 Ogasawara Y, Uchida S, Yamaguchi K, Mizuno N. Chem. Eur. J. 2009; 15: 4343-4343
  • 15 Berson JA. J. Am. Chem. Soc. 1953; 75: 1240-1240
  • 16 Cava MP, McGrady J. J. Org. Chem. 1975; 40: 72-72
  • 17 Naito K, Rickborn B. J. Org. Chem. 1980; 45: 4061-4061
  • 18 Tsurusaki T, Sasamori N, Tokitoh N. Organometallics 2009; 28: 3604-3604
  • 19 Middleton WJ, Heckert E, Little EL, Krespan CG. J. Am. Chem. Soc. 1958; 80: 2783-2783
  • 20 Harjani JR, Singer RD, Garcia MT, Scammells PJ. Green Chem. 2009; 11: 83-83
  • 21 Goldschmidt Z, Genizi E. Tetrahedron Lett. 1987; 28: 4867-4867
    • 22a Kim JH, Hubig SM, Lindeman SV, Kochi JK. J. Am. Chem. Soc. 2001; 123: 87-87
    • 22b Kishan KV. R, Desiraju GR. J. Org. Chem. 1987; 52: 4640-4640
    • 22c Kim JH, Lindeman SV, Kochi JK. J. Am. Chem. Soc. 2001; 123: 4951-4951
    • 22d Murata Y, Kato N, Fujiwara K, Komatsu K. J. Org. Chem. 1999; 64: 3483-3483
  • 23 Huertas D, Florscher M, Dragojlovic V. Green Chem. 2009; 11: 91-91
  • 24 Zhang Z, Peng Z.-W, Hao M.-F, Gao J.-G. Synlett 2010; 2895-2895
  • 25 Choudhary G, Peddinti RK. Green Chem. 2011; 13: 276-276
  • 26 Choudhary G, Peddinti RK. Green Chem. 2011; 13: 3290-3290
  • 27 Method A: Solid–Liquid or Solid–Solid Reactant Combinations; General Procedure A mixture of the diene (1 mmol) and the dienophile (1 mmol) was subjected to hand grinding with a pestle and mortar for the time shown in Tables 1 and 2 to afford the corresponding products in quantitative yield. In the reactions of cyclopentadiene, 1.2 equiv of the diene was used. In most cases, product formation was observed by the change in color; with aryl maleimides, the yellow color of the initial reaction mixture changed to white, whereas with 1,3-diphenyl-2-benzofuran, the color of the mixture changed almost immediately from fluorescent green to white. 2-(4-Bromophenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3-dione (7b) White solid; yield: 317 mg (quant); mp 156 °C. 1H NMR (500 MHz, CDCl3): δ = 7.55 (dt, J = 2.5, 9.0 Hz, 2 H), 7.04 (dt, J = 2.5, 9.5 Hz, 2 H), 6.25 (t, J = 1.5 Hz, 2 H), 3.53–3.47 (m, 2 H), 3.43 (q, J = 1.5 Hz, 2 H), 1.79 (d, J = 9.0 Hz, 1 H), 1.61 (d, J = 9.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 176.3, 134.5, 132.1, 130.7, 128.1, 122.2, 52.1, 45.7, 45.4. 2-(4-Methoxyphenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3-dione (7d) White solid; yield: 170 mg (quant); mp 269 °C. 1H NMR (500 MHz, CDCl3): δ = 7.04 (d, J = 8.0 Hz, 2 H), 6.93 (d, J = 8.0 Hz, 2 H), 6.25 (s, 2 H), 3.80 (s, 3 H), 3.50 (s, 2 H), 3.41 (s, 2 H), 1.78 (d, J = 8.5 Hz, 1 H), 1.60 (d, J = 8.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 177.1, 159.4, 134.5, 127.8, 124.4, 114.4, 55.4, 52.2, 45.6, 45.4. Diethyl 1,4-Diphenyl-1,4-dihydro-1,4-epoxynaphthalene-2,3-dicarboxylate (18) White solid; yield: 440 mg (quant); mp 115 °C. 1H NMR (500 MHz, CDCl3): δ = 7.79 (d, J = 7.0 Hz, 4 H), 7.56 (dd, J = 3.0, 5.0 Hz, 2 H), 7.52–7.43 (m, 6 H), 7.18 (dd, J = 3.0, 5.0 Hz, 2 H), 4.23–4.12 (m, 4 H), 1.17 (t, J = 7.0 Hz, 6 H). 13C NMR (125 MHz, CDCl3): δ = 163.6, 153.7, 149.2, 133.2, 129.0, 128.4, 128.1, 125.9, 122.1, 94.0, 61.3, 13.8. Bicyclo[2.2.1]hept-5-ene-2,2,3,3-tetracarbonitrile (19) White solid; yield: 194 mg (quant); mp 217 °C. 1H NMR (500 MHz, CDCl3): δ = 6.52 (s, 2 H), 4.06 (s, 2 H), 2.25 (s, 2 H). 13C NMR (125 MHz, CDCl3): δ = 133.6, 111.9, 111.7, 110.9, 110.4, 107.9, 55.9, 46.7, 46.4. Bicyclo[2.2.2]oct-5-ene-2,2,3,3-tetracarbonitrile (21) White solid; yield: 208 mg (quant). 1H NMR (500 MHz, CDCl3): δ = 6.69 (s, 2 H), 3.55 (s, 2 H), 2.24 (d, J = 9.5 Hz, 2 H), 1.62 (d, J = 9.5 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 133.1, 111.7, 111.3, 107.9, 42.8, 39.1, 18.8.
  • 28 Method B: Liquid-Assisted Grinding; General Procedure A mixture of the appropriate diene (1 mmol), dienophile (1 mmol), and EtOAc (2–3 drops) was subjected to hand grinding with a pestle in a mortar for the time shown in Tables 1 and 2. Almost immediately, the color of the mixture changed from fluorescent-green or yellow to white. The EtOAc was removed under vacuum to afford the pure solid product in quantitative yield. 2-(4-Bromophenyl)-4,9-diphenyl-3a,4,9,9a-tetrahydro-1H-4,9-epoxybenzo[f]isoindole-1,3-dione (5b) White solid; yield: 521 mg (quant); mp 242 °C. 1H NMR (500 MHz, CDCl3): δ = 8.05 (d, J = 7.5 Hz, 4 H), 7.54 (t, J = 7.5 Hz, 4 H), 7.47 (d, J = 7.0 Hz, 2 H), 7.28–7.22 (m, 4 H), 7.05 (dd, J = 3.0, 5.0 Hz, 2 H), 6.43 (d, J = 8.5 Hz, 2 H), 4.26 (s, 2 H). 13C NMR (125 MHz, CDCl3): δ = 173.0, 144.0, 136.2, 132.1, 130.1, 128.8, 128.7, 128.3, 127.9, 127.1, 122.7, 120.8, 90.6, 54.3. 2-(4-Methoxyphenyl)-4,9-diphenyl-3a,4,9,9a-tetrahydro-1H-4,9-epoxybenzo[f]isoindole-1,3-dione (5d) White solid; yield: 473 mg (quant); mp 209 °C. 1H NMR (500 MHz, CDCl3): δ = 8.07 (d, J = 8.0 Hz, 4 H), 7.53 (t, J = 7.5 Hz, 4 H), 7.46 (t, J = 7.0 Hz, 2 H), 7.29–7.22 (m, 2 H), 7.06 (dd, J = 3.0, 5.0 Hz, 2 H), 6.79 (d, J = 8.5 Hz, 2 H), 6.42 (d, J = 9.0 Hz, 2 H), 4.24 (s, 2 H), 3.75 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 173.5, 159.5, 144.1, 136.3, 128.6, 128.5, 128.1, 127.5, 127.1, 123.7, 120.8, 114.2, 90.5, 55.3, 54.2. 1,4-Diphenyl-1,2,3,4-tetrahydro-1,4-epoxynaphthalene-2,3-dicarbonitrile (16) White solid; yield: 378 mg (quant). 1H NMR (500 MHz, CDCl3): δ = 7.84–7.79 (m, 2 H), 7.69–7.62 (m, 2 H), 7.60–7.59 (m, 6 H), 7.32–7.29 (m, 3 H), 7.15 (d, J = 7.0 Hz, 1 H), 3.87 (d, J = 4.5 Hz, 1 H), 3.54 (d, J = 4.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 144.1, 142.8, 134.1, 133.3, 129.6, 129.2, 129.1, 129.0, 125.8, 125.5, 121.8, 119.7, 117.1, 117.0, 90.7, 44.4, 43.0.