Synlett 2017; 28(18): 2407-2410
DOI: 10.1055/s-0036-1588417
cluster
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalyzed N-Arylation Using N-Trimethylsilyl-carbazole

Yasunori Minami*
a   Research and Development Initiative, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan   Email: yminami@kc.chuo-u.ac.jp   Email: thiyama@kc.chuo-u.ac.jp
,
Takeshi Komiyama
b   Faculty of Science and Engineering, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551 Japan
,
Kenta Shimizu
b   Faculty of Science and Engineering, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551 Japan
,
Shu-ichi Uno
b   Faculty of Science and Engineering, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551 Japan
,
Tamejiro Hiyama*
a   Research and Development Initiative, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan   Email: yminami@kc.chuo-u.ac.jp   Email: thiyama@kc.chuo-u.ac.jp
,
Osamu Goto
c   Sumitomo Chemical, 3-1-98 Kasugadenaka, Konohana-ku, Osaka, 554-8558, Japan
,
Hideyuki Ikehira
d   Sumika Technical Information Service, 4-6-17 Koraibashi,Chuo-ku, Osaka, 541-0043, Japan
› Author Affiliations
Supported by: Grants-in-Aid for Young Scientists (B) 25870747
Supported by: Japan Science and Technology Agency ACT-C
Further Information

Publication History

Received: 06 March 2017

Accepted after revision: 11 April 2017

Publication Date:
08 May 2017 (online)


Published as part of the Cluster Silicon in Synthesis and Catalysis

Abstract

Nickel-catalyzed N-arylation reaction of N-trimethylsilyl-carbazole using aryl bromides is found to proceed in the presence of sodium acetate, giving N-aryl-carbazoles in high yields. Under these conditions, N-trimethylsilyl-carbazole could react with aryl bromides selectively even in the presence of other N-trimethylsilyl-amines or N-H-amines. This arylation reaction was applied to the polymerization to provide a polycarbazole.

Supporting Information

 
  • References and Notes


    • For recent selected examples, see:
    • 1a Suzuki K. Hori Y. Kobayashi T. Adv. Synth. Catal. 2008; 350: 652
    • 1b Zhu R. Xing L. Wang X. Cheng C. Su D. Hu Y. Adv. Synth. Catal. 2008; 350: 1253
    • 1c Kwon JK. Cho JH. Ryu Y.-S. Oh SH. Yum EK. Tetrahedron 2011; 67: 4820
    • 1d Guo F. Wang L. Wang P. Yu J. Han J. Asian J. Org. Chem. 2012; 1: 218
    • 1e Creutz SE. Lotito KJ. Fu GC. Peters JC. Science 2012; 338: 647
    • 1f Louillat M.-L. Patureau FW. Org. Lett. 2013; 15: 164
    • 1g Ziegler DT. Choi J. Muñoz-Molina JM. Bissember AC. Peters JC. Fu GC. J. Am. Chem. Soc. 2013; 135: 13107
    • 1h Crawford SM. Lavery CB. Stradiotto M. Chem. Eur. J. 2013; 19: 16760
    • 1i Nakayama Y. Yokoyama N. Nara H. Kobayashi T. Fujiwhara M. Adv. Synth. Catal. 2015; 357: 2322
    • 1j Yoo W.-J. Tsukamoto T. Kobayashi S. Org. Lett. 2015; 17: 3640
    • 1k Chen F. Liu N. Ji E. Dai B. RSC Adv. 2015; 5: 51512

      For selected examples, see:
    • 2a Jiang W. Duan L. Qiao J. Dong G. Zhang D. Wang L. Qiu Y. J. Mater. Chem. 2011; 21: 4918
    • 2b Uoyama H. Goushi K. Shizu K. Nomura H. Adachi C. Nature (London, U.K.) 2012; 492: 234
    • 2c Chen Q. Luo M. Hammaeshøj P. Zhou D. Han Y. Laursen BW. Yan C.-G. Han B.-H. J. Am. Chem. Soc. 2012; 134: 6084
    • 2d Komino T. Tanaka H. Adachi C. Chem. Mater. 2014; 26: 3665
    • 2e Ishimatsu R. Matsunami S. Kasahara T. Mizuno J. Edura T. Adachi C. Nakano K. Imato T. Angew. Chem. Int. Ed. 2014; 53: 6993
    • 3a Shimizu K. Minami Y. Goto O. Ikehira H. Hiyama T. Chem. Lett. 2014; 43: 438
    • 3b Minami Y. Komiyama T. Shimizu K. Hiyama T. Goto O. Ikehira H. Bull. Chem. Soc. Jpn. 2015; 88: 1437
    • 4a Barluenga J. Aznar F. Valdés C. Angew. Chem. Int. Ed. 2004; 43: 343
    • 4b Smith CJ. Early TR. Holmes AB. Shute RE. Chem. Commun. 2004; 1976
    • 4c Smith CJ. Tsang MW. S. Holmes AB. Danheiser RL. Tester JW. Org. Biomol. Chem. 2005; 3: 3767

      For recent reviews of cross-coupling reaction using organosi­lanes, see:
    • 5a Sore HF. Galloway WR. J. D. Spring DR. Chem. Soc. Rev. 2012; 41: 1845
    • 5b Denmark SE. Ambrosi A. Org. Process Res. Dev. 2015; 19: 982
    • 5c Komiyama T. Minami Y. Hiyama T. ACS Catal. 2017; 7: 631
  • 6 Hooper MW. Utsunomiya M. Hartwig JF. J. Org. Chem. 2003; 68: 2861

    • For reviews, see:
    • 7a Ley SV. Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 7b Evano G. Blanchard N. Toumi M. Chem. Rev. 2008; 108: 3054
    • 7c Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
    • 7d Surry DS. Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
    • 7e Monnier F. Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 7f Surry DS. Buchwald SL. Chem. Sci. 2010; 1: 13
    • 7g Sadig JE. R. Willis MC. Synthesis 2011; 1
    • 7h Surry DS. Buchwald SL. Chem. Sci. 2011; 2: 27
    • 7i Beletskaya IP. Cheprakov AV. Organometallics 2012; 31: 7753
    • 7j Rauws TR. M. Maes BU. W. Chem. Soc. Rev. 2012; 41: 2463
    • 7k R.-Castillo P. Buchwald SL. Chem. Rev. 2016; 116: 12564
  • 8 Hiyama T. Minami Y. Ikehira H. Goto O. JP 2014196464 2014 ; brief working examples including polymerization are listed in the patent

    • For reviews of Ni-catalyzed C–N bond-forming coupling, see:
    • 9a Schranck J. Rotzler J. Org. Process Res. Dev. 2015; 19: 1936
    • 9b Marín M. Rama RJ. Nicasio MC. Chem. Rec. 2016; 16: 1819
  • 10 General Experimental Procedure for the Synthesis of N-Aryl-carbazoles A mixture of Ni(cod)2 (0.050 mmol), SIPr·HCl (0.050 mmol), KOt-Bu (0.050 mmol), and CPME was stirred at 100 °C for 30 min. To this was added NaOAc (0.85 mmol), aryl bromide 1 (0.50 mmol), and N-TMS-carbazole 2 (0.65 mmol). The reaction mixture was quenched with H2O. The aqueous layer was extracted with Et2O and washed with brine. The combined organic layers were dried over anhydrous MgSO4. After concentration in vacuo, the residue was purified by flash chromatography on silica gel or preparative TLC to afford N-aryl-carbazoles 3. N-(4-Methoxyphenyl)-3,6-dichloro-9H-carbazole (3j) was obtained according to the general experimental procedure. Pale yellow solid; yield 140 mg (78%). 1H NMR (400 MHz, CDCl3): δ = 3.90 (s, 3 H), 7.08 (d, J = 9.2 Hz, 2 H), 7.19 (d, J = 8.8 Hz, 2 H), 7.32–7.35 (m, 4 H), 8.00 (d, J = 2.0 Hz, 2 H). 13C NMR (126 MHz, CDCl3): δ = 55.7, 111.1, 115.4, 120.2, 123.3, 125.6, 126.8, 128.5, 129.5, 140.2, 159.4. MS (EI, 70 eV): m/z (%) = 341 (100) [M+], 326 (33), 306 (3), 262 (16), 228 (14), 171 (4).
  • 11 Xu T. Lu R. Jin M. Qui X. Xue P. Bao C. Zhao Y. Tetrahedron Lett. 2005; 46: 6883
  • 12 The Supporting Information can be used for detailed procedures and the characterization data of other products.