Synlett 2017; 28(19): 2642-2646
DOI: 10.1055/s-0036-1588531
letter
© Georg Thieme Verlag Stuttgart · New York

β-Lactam-Synthon-Interceded Metal/Acid-Free Diastereoselective Access to Highly Functionalized Oxazol-5-ones and Dihydroimidazoles

Amandeep Singh
a   Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India   Email: vipan_org@yahoo.com
,
Shalini,
Harleen Kaur
a   Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India   Email: vipan_org@yahoo.com
,
Palak Sharma
a   Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India   Email: vipan_org@yahoo.com
,
Amit Anand
b   Department of Chemistry, Khalsa College, Amritsar 143005, India
,
Vipan Kumar*
a   Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India   Email: vipan_org@yahoo.com
› Author Affiliations
A.A. wishes to thank the University Grants Commission, New Delhi, India for financial support under grant no. ROMRP-NRCB-CHEM-2015-16-87198
Further Information

Publication History

Received: 22 May 2017

Accepted after revision: 11 July 2017

Publication Date:
11 August 2017 (online)


Abstract

Facile diastereoselective access to functionalized oxazol-5-ones and dihydroimidazoles was accomplished through base-promoted intramolecular amidolysis and methoxide-assisted tandem intramolecular amidolysis/ring opening/intramolecular cyclization, respectively, of C-3-functionalized azetidin-2-ones.

Supporting Information

 
  • References

  • 1 Kumar V. Mahajan MP. In Heterocycles in Natural Product Synthesis. Majumdar KC. Chattopadhyay SK. Wiley-VCH; Weinheim: 2011: 507
  • 3 Alba A.-NR. Ramon R. Chem. Asian J. 2011; 6: 720
  • 4 Melhado AD. Luparia M. Toste FD. J. Am. Chem. Soc. 2007; 129: 12638
    • 6a Pasha MA. Jayashankara VP. Venugopala KN. Rao KG. J. Pharmacol. Toxicol. 2007; 2: 264
    • 6b Mariappan G. Saha BP. Datta S. Kumar D. Haldar KP. J. Chem. Sci. 2011; 123: 335
    • 7a Sharma N. Banerjee J. Shrestha N. Chaudhury D. Eur. J. Biomed. Pharm. Sci. 2015; 2: 964
    • 7b Hamidian H. Tagizadeh R. Fozooni S. Abbasalipour V. Taheri A. Namjou M. Bioorg. Med. Chem. 2013; 21: 2088
    • 7c Hamidian H. Azizi S. Bioorg. Med. Chem. 2015; 23: 7089
    • 7d Al-Riyami L. Rodgers DT. Rzepecka J. Pineda MA. Suckling CJ. Harnett MM. Harnett W. Exp. Parasitol. 2015; 158: 18
    • 8a Paul S. Nanda P. Gupta R. Loupy A. Tetrahedron Lett. 2004; 45: 425
    • 8b Beccalli EM. Clerici F. Gelmi ML. Tetrahedron 1999; 55: 781
    • 8c Tikdari AM. Fozooni S. Hamidian H. Molecules 2008; 13: 3246
    • 9a Forte B. Malgesini B. Piutti C. Quartieri F. Scolaro A. Papeo G. Mar. Drugs 2009; 7: 705
    • 9b Jin Z. Nat. Prod. Rep. 2011; 28: 1143
    • 10a Chary MV. Keerthysri NC. Vuppalapati SV. N. Lingaiah N. Kantevari S. Catal. Commun. 2008; 9: 2013
    • 10b Antolini M. Bozzoli A. Ghiron C. Kennedy G. Rossi T. Ursini A. Bioorg. Med. Chem. Lett. 1999; 9: 1023
    • 10c Hranjec M. Piantanida I. Kralj M. Šuman L. Pavelić K. Karminski-Zamola G. J. Med. Chem. 2008; 51: 4899
    • 10d Venkatesan S. Meera Sheriffa Begum KM. Desalination 2009; 236: 65
    • 10e Gupta P. Hameed S. Jain R. Eur. J. Med. Chem. 2004; 39: 805
    • 11a Alonen A. Jansson J. Kallonen S. Kiriazis A. Aitio O. Finel M. Kostiainen R. Bioorg. Chem. 2008; 36: 148
    • 11b Leister C. Wang Y. Zhao Z. Lindsley CW. Org. Lett. 2004; 6: 1453
    • 11c Polevaya L. Mavromoustakos T. Zoumboulakis P. Grdadolnik SG. Roumelioti P. Giatas N. Mutule I. Keivish T. Vlahakos DV. Iliodromitis EK. Kremastinos DT. Matsoukas J. Bioorg. Med. Chem. 2001; 9: 1639
    • 11d Grange RL. Ziogas J. North AJ. Angus JA. Schiesser CH. Bioorg. Med. Chem. Lett. 2008; 18: 1241
    • 12a Diez-González S. Marion N. Nolan SP. Chem. Rev. 2009; 109: 3612
    • 12b Poyatos M. Mata JA. Peris E. Chem. Rev. 2009; 109: 3677
    • 12c Benhamou L. Chardon E. Lavigne G. Bellemin-Laponnaz S. César V. Chem. Rev. 2011; 111: 2705
    • 13a Pinkert A. Marsh KN. Pang SS. Staiger MP. Chem. Rev. 2009; 109: 6712
    • 13b Martins MA. P. Frizzo CP. Moreira DN. Zanatta N. Bonacorso HG. Chem. Rev. 2008; 108: 2015
    • 14a Zhang Z. Xie F. Jia J. Zhang W. J. Am. Chem. Soc. 2010; 132: 15939
    • 14b Ding H. Ma C. Yang Y. Wang Y. Org. Lett. 2005; 7: 2125
    • 14c Hojabri L. Hartikka A. Moghaddam FM. Arvidsson PI. Adv. Synth. Catal. 2007; 349: 740
  • 15 Kuroda N. Shimoda R. Wada M. Nakashima K. Anal. Chim. Acta 2000; 403: 131
  • 16 Stähelin M. Burland DM. Ebert M. Miller RD. Smith BA. Twieg RJ. Volksen W. Walsh CA. Appl. Phys. Lett. 1992; 61: 1626
    • 17a Balalaie S. Arabanian A. Green Chem. 2002; 2: 274
    • 17b Kidwai M. Mothsra P. Bansal V. Somvanshi RK. Ethayathulla AS. Dey S. Singh TP. J. Mol. Catal. A: Chem. 2007; 265: 177
    • 17c Kantevari S. Vuppalapati SV. N. Biradar DO. Nagarapu L. J. Mol. Catal. A: Chem. 2007; 266: 109
    • 17d Heravi MM. Derikvand F. Bamoharram FF. J. Mol. Catal. A: Chem. 2007; 263: 112
    • 17e Nagarapu L. Apuri S. Kantevari S. J. Mol. Catal. A: Chem. 2007; 266: 104
    • 17f Karimi AR. Alimohammadi Z. Azizian J. Mohammadi AA. Mohammadizadeh MR. Catal. Commun. 2006; 7: 728
  • 18 Samai S. Nandi GC. Singh P. Singh MS. Tetrahedron 2009; 65: 10155
  • 19 Heravi MM. Derikvand F. Haghighi M. Monatsh. Chem. 2008; 139: 31
  • 20 Sadeghi B. Mirjalili BB. F. Hashemi MM. Tetrahedron Lett. 2008; 49: 2575
  • 21 Zhang C. Moran EJ. Woiwade TF. Short KM. Mjalli AM. M. Tetrahedron Lett. 1996; 37: 751
  • 22 Claiborne CF. Liverton NJ. Nguyen KT. Tetrahedron Lett. 1998; 39: 8939
  • 23 Karimi AR. Alimohammadi Z. Amini MM. Mol. Diversity 2010; 14: 635
    • 24a Balalaie S. Hashemi MM. Akhbari M. Tetrahedron Lett. 2003; 44: 1709
    • 24b Lantos I. Zhang W.-Y. Shui X. Eggleston DS. J. Org. Chem. 1993; 58: 7092
    • 24c Davidson D. Weiss M. Jelling M. J. Org. Chem. 1937; 2: 319
    • 25a Delpiccolo CM. L. Amezaga MM. Mata EG. In Beta-Lactams: Novel Synthetic Pathways and Applications . Banik BK. Springer Nature; Cham: 2017: 129
    • 25b Alcaide B. Almendros P. Aragoncillo C. In Beta-Lactams: Novel Synthetic Pathways and Applications . Banik BK. Springer Nature; Cham: 2017: 163
    • 25c Kamath A. Ojima I. Tetrahedron 2012; 68: 10640
    • 25d Dekeukeleire S. D’hooghe M. Vanwalleghem M. Van Brabandt W. De Kimpe N. Tetrahedron 2012; 68: 10827
    • 26a Mehra V. Kumar V. Tetrahedron Lett. 2014; 55: 845
    • 26b Mehra V. Singh P. Manhas N. Kumar V. Synlett 2014; 25: 1124
    • 26c Mehra V. Kumar V. Tetrahedron 2013; 69: 3857
    • 26d Mehra V. Neetu Kumar V. Tetrahedron Lett. 2013; 54: 4763
    • 26e Mehra V. Singh P. Kumar V. Tetrahedron 2012; 68: 8395
    • 26f Singh P. Raj R. Bhargava G. Hendricks DT. Handa S. Slaughter LM. Kumar V. Eur. J. Med. Chem. 2012; 58: 513
    • 26g Singh P. Mehra V. Anand A. Kumar V. Mahajan MP. Tetrahedron Lett. 2011; 52: 5060
    • 26h Singh P. Bhargava G. Kumar V. Mahajan MP. Tetrahedron Lett. 2010; 51: 4272
  • 27 Singh P. Sachdeva S. Raj R. Kumar V. Mahajan MP. Nasser S. Vivas L. Gut J. Rosenthal PJ. Feng T.-S. Chibale K. Bioorg. Med. Chem. Lett. 2011; 21: 4561
  • 28 Lin W. Zhang X. He Z. Jin Y. Gong L. Mi A. Synth. Commun. 2002; 32: 3279
  • 29 Oxazol-5-ones (3af); General Procedure A solution of the appropriate azetidinone 2 (1.0 mmol) in anhyd DMF (5 mL) was added dropwise to a stirred suspension of t-BuOK (1.2 mmol) in anhyd DMF (5 mL), and the mixture was stirred at r.t. for 30 min. When the reaction was complete (TLC), the mixture was concentrated under reduced pressure and extracted with EtOAc (3 × 20 mL). The combined organic layers were dried (Na2SO4), filtered, and concentrated under vacuum to afford a crude product that was purified by column chromatography [silica gel, EtOAc–hexane (40:60)].
  • 30 2-Methyl-4-{(2E)-1-[(4-tolyl)amino]-3-phenylprop-2-en-1-yl}-1,3-oxazol-5(4H)-one (3b) Off-white solid; yield: 92 mg (80%); mp 160–162 °C. 1H NMR (400 MHz, CDCl3): δ = 2.03 (s, 3 H, CH3), 2.26 (s, 3 H, CH3), 4.53 (dd, J 1,2 = 1.76, J 1,3 = 7.88 Hz, 1 H, H-2), 4.78 (dd, J 1,2 = 2.12, J 1,3 = 7.32 Hz, 1 H, H-1), 6.28 (dd, J 1,2 = 7.92, J 1,3 = 15.96 Hz, 1 H, H-3), 6.73 (d, J = 15.9 Hz, 1 H, H-4), 7.04 (d, J = 8.2 Hz, 2 H, Ar-H), 7.24–7.36 (m, 7 H, Ar-H). 13C NMR (100 MHz, CDCl3): δ = 21.0, 22.9, 62.8, 63.3, 117.4, 124.9, 126.8, 128.4, 128.7, 129.7, 134.2, 134.7, 135.0, 135.6, 164.0, 170.7. HRMS: m/z [M+] calcd for C20H20N2O2: 320.1525; found. 320.1530. 4-{(2E)-1-[(4-Chlorophenyl)amino]-3-phenylprop-2-en-1-yl}-2-methyl-1,3-oxazol-5(4H)-one (3c) Off-white solid; yield: 90.3 mg (79%); mp 164–165 °C. 1H NMR (400 MHz, CDCl3): δ = 2.03 (s, 3 H, CH3), 4.62 (dd, J 1,2 = 2.00, J 1,3 = 8.08 Hz, 1 H, H-2), 4.73 (dd, J 1,2 = 2.3, J 1,3 = 7.32 Hz, 1 H, H-1), 6.28 (dd, J 1,2 = 8.04, J 1,3 = 15.92 Hz, 1 H, H-3), 6.76 (d, J = 15.92 Hz, 1 H, H-4), 7.21 (d, J = 8.8 Hz, 2 H, Ar-H), 7.26–7.37 (m, 7 H, Ar-H). 13C NMR (100 MHz, CDCl3): δ = 22.9, 62.7, 63.8, 118.6, 124.4, 126.8, 128.7, 128.8, 129.3, 129.7, 135.1, 136.0, 164.2, 170.7. HRMS: m/z [M+] calcd for C19H17ClN2O2: 340.0979; found: 340.0986. 4-{(2E)-1-[(4-Fluorophenyl)amino]-3-phenylprop-2-en-1-yl}-2-methyl-1,3-oxazol-5(4H)-one (3d) Off-white solid; yield: 94.2 mg (82%); mp 170–172 °C. 1H NMR (400 MHz, CDCl3): δ = 2.03 (s, 3 H, CH3), 4.62 (ddd, J 1,2 = 0.72, J 1,3 = 2.36, J 1,5 = 8.08 Hz, 1 H, H-2), 4.73 (dd, J 1,2 = 2.4, J 1,3 = 7.32 Hz, 1 H, H-1), 6.27 (dd, J 1,2 = 8.08, J 1,3 = 15.96 Hz, 1 H, H-3), 6.76 (d, J = 15.96 Hz, 1 H, H-4), 7.21 (d, J = 9.0 Hz, 2 H, Ar-H), 7.26–7.37 (m, 7 H, Ar-H). 13C NMR (100 MHz, CDCl3): δ = 22.9, 62.7, 63.7, 118.6, 124.4, 126.8, 128.7, 128.8, 129.3, 129.7, 135.1, 135.4, 136.0, 164.2, 170.8. HRMS: m/z [M+] calcd for C19H17FN2O2: 324.1274; found: 324.1261.
  • 31 Bifulco G. Dambruoso P. Gomez-Paloma L. Riccio R. Chem. Rev. 2007; 107: 3744
  • 32 4,5-Dihydro-1H-imidazoles 5af; General Procedure A solution of the appropriate azetidinone 2 in anhyd MeOH (10 mL) was added to a stirred solution of NaOMe (2.0 equiv) in anhyd MeOH (5 mL), and the mixture was stirred at 80 °C for 6 h until the reaction was complete (TLC). The mixture was then concentrated and extracted with EtOAc (3 × 20 mL). The combined organic layers were dried over anhyd Na2SO4, filtered, and concentrated under vacuum to obtain a crude product that was purified by column chromatography [silica gel, EtOAc–hexane (10:90)].
  • 33 Methyl 1-(4-Chlorophenyl)-2-methyl-5-[(E)-2-phenylvinyl]-4,5-dihydro-1H-imidazole-4-carboxylate (5c) Brown oil; yield: 84.5 mg (71%). 1H NMR (500 MHz, CDCl3): δ = 2.06 (s, 3 H, CH3), 3.76 (s, 3 H, OCH3), 4.48 (t, J = 4.90 Hz, 1 H, H-1), 4.95 (dd, J 1,2 = 4.95, J 1,3 = 7.30 Hz, 1 H, H-2), 6.07 (dd, J 1,2 = 6.35, J 1,3 = 15.86 Hz, 1 H, H-3), 6.62 (d, J = 15.7 Hz, 1 H, H-4), 6.67 (d, J = 8.55 Hz, 2 H, Ar-H), 7.14 (d, J = 8.60 Hz, 2 H, Ar-H), 7.32–7.35 (m, 5 H, Ar-H). 13C NMR (125 MHz, CDCl3): δ = 23.2, 52.7, 55.8, 58.2, 114.9, 122.9, 125.8, 126.6, 128.0, 128.6, 129.1, 133.1, 136.0, 145.0, 170.3, 170.7. HRMS: m/z [M + H]+ calcd for C20H19ClN2O2: 355.1135; found: 355.1153.