Synlett 2017; 28(19): 2675-2679
DOI: 10.1055/s-0036-1588533
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Cyanamides from Cyanogen Bromide under Mild Conditions through N-Cyanation of Allylic Tertiary Amines

Honggang Liang
School of Materials Science and Engineering, Beijing Institute of Technology, South Street of No. 5, Zhongguancun, Haidian District, Beijing, 100081, P. R. of China   Email: sunch@bit.edu.cn
,
Lingxiang Bao
School of Materials Science and Engineering, Beijing Institute of Technology, South Street of No. 5, Zhongguancun, Haidian District, Beijing, 100081, P. R. of China   Email: sunch@bit.edu.cn
,
Yao Du
School of Materials Science and Engineering, Beijing Institute of Technology, South Street of No. 5, Zhongguancun, Haidian District, Beijing, 100081, P. R. of China   Email: sunch@bit.edu.cn
,
Yiying Zhang
School of Materials Science and Engineering, Beijing Institute of Technology, South Street of No. 5, Zhongguancun, Haidian District, Beijing, 100081, P. R. of China   Email: sunch@bit.edu.cn
,
Siping Pang
School of Materials Science and Engineering, Beijing Institute of Technology, South Street of No. 5, Zhongguancun, Haidian District, Beijing, 100081, P. R. of China   Email: sunch@bit.edu.cn
,
Chenghui Sun*
School of Materials Science and Engineering, Beijing Institute of Technology, South Street of No. 5, Zhongguancun, Haidian District, Beijing, 100081, P. R. of China   Email: sunch@bit.edu.cn
› Author Affiliations
The authors are grateful to the National Natural Science Foundation of China (Grant NO.21576026) and the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant NO.11176004) for financial support.
Further Information

Publication History

Received: 05 June 2017

Accepted after revision: 09 July 2017

Publication Date:
17 August 2017 (online)


Abstract

Cyanamides were selectively formed through a one-step nucleophilic substitution reaction of allylic tertiary amines with cyanogen bromide. Because of the mild reaction conditions and good yields of the reaction, as well as the commercial availability of the starting materials, this new method represents a valuable tool for the synthesis of cyan­amides through an N-deallylation reaction and an N-cyanation reaction in one pot.

Supporting Information

 
  • References and Notes


    • For reviews on cyanamides as building blocks in organic synthesis: see:
    • 1a Anbarasan P. Neumann H. Beller M. Angew. Chem. Int. Ed. 2011; 50: 519
    • 1b Anbarasan P. Neumann H. Beller M. Chem. Eur. J. 2011; 17: 4217
    • 1c Gong T.-J. Xiao B. Cheng W.-M. Su W. Xu J. Liu Z.-J. Liu L. Fu Y. Bonaga J. Am. Chem. Soc. 2013; 135: 10630
    • 1d Boñaga LV. R. Zhang H.-C. Maryanoff BE. Chem. Commun. 2004; 2394
    • 1e Soo HS. Figueroa JS. Cummins CC. J. Am. Chem. Soc. 2004; 126: 11370
    • 1f Larraufie M.-H. Ollivier C. Fensterbank L. Malacria M. Lacôte E. Angew. Chem. Int. Ed. 2010; 49: 2178
    • 1g Nekrasov DD. Russ. J. Org. Chem. 2004; 40: 1387
    • 1h Maestri G. Larraufie M.-H. Ollivier C. Malacria M. Fensterbank L. Lacôte E. Org. Lett. 2012; 14: 5538
    • 1i Larraufie M.-H. Maestri G. Malacria M. Ollivier C. Fensterbank L. Lacôte E. Synthesis 2012; 44: 1279
    • 1j Wang C. Wang D. Xu F. Pan B. Wan B. J. Org. Chem. 2013; 78: 3065
    • 2a Miyasaka H. Clérac R. Campos-Fernádez CS. Dubner KR. Inorg. Chem. 2001; 40: 1663
    • 2b Pombeiro AJ. L. Inorg. Chim. Acta 1992; 198–200: 179
  • 3 Yu H. Qin Z. Dai H. Zhang X. Qin X. Wang T. Fang J. ARKIVOC 2008; (xvi): : 99
  • 4 Wada S. Toyota K. Takada A. J. Nematol. 2011; 43: 1
    • 5a Yang W.-C. Li J. Li J. Chen Q. Yang G.-F. Bioorg. Med. Chem. Lett. 2012; 22: 1455
    • 5b Zhang L. Peng X.-M. Damu GL. V. Geng R.-X. Zhou C.-H. Med. Res. Rev. 2014; 34: 340
  • 6 Feldman PL. Brackeen MF. Cowan DJ. Marron BE. Schoenen FJ. Stafford JA. Suh EM. Domanico PL. Rose D. Leesnitzer MA. Brawly ES. Strickland AB. Verghese MW. Connolly KM. Bateman-Fite R. Noel LS. Sekut L. Stimpson SA. J. Med. Chem. 1995; 38: 1505

    • For reviews on the preparation of cyanamides from amines, see:
    • 7a Goldberg K. Clarke DS. Scott JS. Tetrahedron Lett. 2014; 55: 4433
    • 7b Paciaroni NG. Ratnayake R. Matthews JH. Norwood VM. IV. Arnold AC. Dang LH. Luesch H. Huigens III RW. Chem. Eur. J. 2017; 23: 4327
    • 7c Fukumoto K. Oya T. Itazaki M. Nakazawa H. J. Am. Chem. Soc. 2009; 131: 38
    • 7d Teng F. Yu J.-T. Zhou Z. Chu H. Cheng J. J. Org. Chem. 2015; 80: 2822
    • 7e Servais A. Azzouz M. Lopes D. Courillon C. Malacria M. Angew. Chem. Int. Ed. 2007; 46: 576
    • 7f Hashimoto T. Ishii S. Yano R. Miura H. Sakata K. Takeuchi R. Adv. Synth. Catal. 2015; 357: 3901
    • 7g Hume WE. Shingaki T. Takashima T. Hashizume Y. Okauchi T. Katayama Y. Hayashinaka E. Wada Y. Kusuhara H. Sugiyama Y. Watanabe Y. Bioorg. Med. Chem. 2013; 21: 7584
    • 7h Teng F. Yu J.-T. Jiang Y. Yang H. Cheng J. Chem. Commun. 2014; 50: 8412
    • 8a For a review on the preparation of cyanamides from amides, see: Zhang M. Sheng W. Ji P. Liu Y. Guo C. RSC Adv. 2015; 5: 56438 ; see also ref. 1

      For reviews on the preparation of cyanamides from ketimines, see:
    • 9a Dunsford JJ. Camp JE. Tetrahedron Lett. 2013; 54: 4522
    • 9b Ayres JN. Ling KB. Morrill LC. Org. Lett. 2016; 18: 5528
  • 10 Krompiec S. Krompiec M. Penczek R. Ignasiak H. Coord. Chem. Rev. 2008; 252: 1819
    • 11a Oie H. Sudo A. Endo T. J. Polym. Sci. Polym. 2013; 51: 2035
    • 11b Lin CH. Wong TI. Wang MW. Chang HC. Juang TY. J. Polym. Sci. Polym. Chem. Ed. 2015; 53: 513
    • 11c Wang H. Schröder N. Glorius F. Angew. Chem. Int. Ed. 2013; 52: 5386
    • 11d Manoharan M. Lu Y. Casper MD. Just G. Org. Lett. 2000; 2: 243
    • 11e Kitov PI. Bundle DR. Org. Lett. 2001; 3: 2835

      For reviews on transition-metal-catalyzed deprotection of allylic tertiary amines, see:
    • 12a Garro-Helions F. Merzouk A. Guibe F. J. Org. Chem. 1993; 58: 6109
    • 12b Hiraki K. Matsunaga T. Kawano H. Organometallics 1994; 13: 1878
    • 12c Lemaire-Audoire S. Savignac M. Genêt JP. Bernard J.-M. Tetrahedron Lett. 1995; 36: 1267
    • 12d Taniguchi T. Ogasawara K. Tetrahedron Lett. 1998; 39: 4679
    • 12e Alcaide B. Almendros P. Alonso JM. Aly MF. Org. Lett. 2001; 3: 3781
    • 12f Vutukuri DR. Bharathi P. Yu Z. Rajasekaran K. Tran M.-H. Thayumanavan S. J. Org. Chem. 2003; 68: 1146
    • 12g Alcaide B. Almendros P. Alonso JM. Chem. Eur. J. 2003; 9: 5793
    • 12h Alcaide B. Almendros P. Alonso JM. Tetrahedron Lett. 2003; 44: 8693
    • 12i Krompiec S. Pigulla M. Krompiec M. Baj S. Mrowiec-Białoń J. Kasperczyk J. Tetrahedron Lett. 2004; 45: 5257
    • 12j Kamijo S. Huo Z. Jin T. Kanazawa C. Yamamoto Y. J. Org. Chem. 2005; 70: 6389
    • 12k Krompiec S. Pigulla M. Krompiec M. Marciniec B. Chadyniak D. J. Mol. Catal. A: Chem. 2005; 237: 17
    • 12l Zacuto MJ. Xu F. J. Org. Chem. 2007; 72: 6298
    • 12m Cadierno V. Gimeno J. Nebra N. Chem. Eur. J. 2007; 13: 6590
    • 12n Kajihara K. Arisawa M. Shuto S. J. Org. Chem. 2008; 73: 9494
    • 12o Li T.-S. Jiang J.-H. Chem. Commun. 2009; 7236
    • 12p Jana AK. Panda G. RSC Adv. 2013; 3: 16795
  • 13 Nandi P. Dye JL. Jackson JE. Tetrahedron Lett. 2009; 50: 3864
  • 14 Kumar P. Cherian SK. Jain R. Show K. Tetrahedron Lett. 2014; 55: 7172
  • 15 Kapnang H. Charles G. Tetrahedron Lett. 1983; 24: 3233
  • 16 Piperidine-1-carbonitrile (1); Typical Procedure BrCN (4.4 mmol) was slowly added to a solution of N-allylpiperidine (4 mmol) in anhyd CHCl3 (5 mL) at r.t. under N2, and the mixture was then stirred for 24 h at r.t. until the reaction was complete (TLC). The mixture was then purified by column chromatography (silica gel, 10% EtOAc–PE) to give a colorless liquid; yield: 0.33 g (75%). IR (film): 2945, 2857, 2210 (C≡N), 1451 cm–1. 1H NMR (600 MHz, CDCl3): δ = 1.47 (m, 2 H), 1.53–1.54 (m, 4 H), 3.06–3.07 (m, 4 H). 13C NMR (150 MHz, CDCl3): δ = 118.6, 50.1, 24.5, 23.0. HRMS (ESI+): m/z [M + Na]+ calcd for C6H10N2Na: 133.073677; found: 133.073619.
  • 17 4-Methylpiperazine-1-carbonitrile (10); Typical Procedure Prepared from 1-allyl-4-methylpiperazine (4 mmol) as for compound 1, and purified by column chromatography (silica gel, 2% MeOH–CH2Cl2) to give a colorless liquid; yield: 0.26 g (52%). IR (film): 2943, 2798, 2211 (C≡N), 1452, 1375, 1002, 787 cm–1. 1H NMR (600MHz, CDCl3): δ = 2.19 (s, 3 H), 2.36 (t, J = 5.4, 4.8 Hz, 4 H), 3.14 (t, J = 5.4 Hz, 4 H). 13C NMR (CDCl3, 150 MHz): δ = 117.6, 53.3, 48.9, 46.1. HRMS (ESI+): m/z [M + H]+ calcd for C6H12N3: 126.102620, found 126.102574.
  • 18 Dimethylcyanamide (17) Prepared from N,N-dimethylprop-2-en-1-amine (4 mmol) as for compound 1, and purified by column chromatography (silica gel, 10% EtOAc–PE) to give a colorless liquid; yield: 0.20 g, (72%). IR (film): 2971, 2823, 2217 (C≡N), 1455, 1339, 1058, 762 cm–1. 1H NMR (600MHz, CDCl3): δ = 2.75 (s, 6 H). 13C NMR (150 MHz, CDCl3): δ = 119.3, 40.4. HRMS (ESI+): m/z [M + Na]+ calcd for C3H6N2Na: 93.042365; found: 93.042319.
  • 19 Bhat RG. Ghosh Y. Chandrasekaran S. Tetrahedron Lett. 2004; 45: 7983
    • 20a Katritzky AR. Brycki BE. Chem. Soc. Rev. 1990; 19: 83
    • 20b Helmick JS. Martin KA. Heinrich JL. Novak M. J. Am. Chem. Soc. 1991; 113: 3459
    • 20c Rossi RA. Pierini AB. Peñéñory AB. Chem. Rev. 2003; 103: 71
    • 20d Médoc M. Sobrio F. RSC Adv. 2014; 4: 35371