Synthesis 2017; 49(18): 4247-4253
DOI: 10.1055/s-0036-1588749
special topic
© Georg Thieme Verlag Stuttgart · New York

Concise Total Syntheses of Paullone and Kenpaullone via Cyanide-Catalyzed Intramolecular Imino-Stetter Reaction

Sang Eun Lee
Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea   Email: cheon@korea.ac.kr
,
Seong Jong Lee
Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea   Email: cheon@korea.ac.kr
,
Cheol-Hong Cheon*
Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea   Email: cheon@korea.ac.kr
› Author Affiliations
Further Information

Publication History

Received: 01 February 2017

Accepted after revision: 22 February 2017

Publication Date:
14 March 2017 (online)


Published as part of the Special Topic Modern Cyclization Strategies in Synthesis

Abstract

Highly concise total syntheses of paullone and kenpaullone were developed. Cyanide-catalyzed intramolecular imino-Stetter reaction of aldimines derived from methyl 2-aminocinnamate derivatives and 2-nitrobenzaldehyde provided 2-(2′-nitrophenyl)indole-3-acetic acid derivatives. Subsequent reduction of the nitro group with zinc under acidic conditions to an amino group followed by spontaneous lactam formation allowed for the total syntheses of paullone and kenpaullone to be completed in two steps starting from commercially available materials. The direct use of a nitro group as the precursor of an amino group present in the phenyl ring at the 2-position in the indole ring significantly streamlined the total syntheses of these target molecules.

Supporting Information

 
  • References

    • 1a Zaharevitz DW. Gussio R. Leost M. Senderowicz AM. Lahusen T. Kunick C. Meijer L. Sausville EA. Cancer Res. 1999; 59: 2566
    • 1b Leost M. Schultz C. Link A. Wu Y.-Z. Biernat J. Mandelkow E.-V. Bibb JA. Snyder GL. Greengard P. Zaharevitz DW. Gussio R. Senderowicz AM. Suasville EA. Kunick C. Meijer L. Eur. J. Biochem. 2000; 267: 5983
    • 1c Pies T. Schaper K.-J. Leost M. Zaharevitz DW. Gussio R. Meijer L. Kunick C. Arch. Pharm. (Weinheim) 2004; 337: 486
    • 1d Tolle N. Kunick C. Curr. Top. Med. Chem. 2011; 11: 1320
    • 2a Schultz C. Link A. Leost M. Zaharevitz DW. Gussio R. Sausville EA. Meijer L. Kunick C. J. Med. Chem. 1999; 42: 2909
    • 2b Kunick C. Schultz C. Lemcke T. Zaharevitz DW. Gussio R. Jalluri RK. Sausville EA. Leost M. Meijer L. Bioorg. Med. Chem. Lett. 2000; 10: 567
    • 2c Wieking K. Knockaert M. Leost M. Zaharevitz DW. Meijer L. Kunick C. Arch. Pharm. (Weinheim) 2002; 335: 311
    • 2d Kunick C. Lauenroth K. Leost M. Meijer L. Lemcke T. Bioorg. Med. Chem. Lett. 2004; 14: 413
    • 2e Stukenbrock H. Mussmann R. Geese M. Ferandin Y. Lozach O. Lemcke T. Kegel S. Lomow A. Burk U. Dohrmann C. Meijer L. Austen M. Kunick C. J. Med. Chem. 2008; 51: 2196
    • 3a Joucla L. Putey A. Joseph B. Tetrahedron Lett. 2005; 46: 8177
    • 3b Avila-Zarraga JG. Lujan-Montelongo A. Covarrubias-Zuniga A. Romero-Ortega M. Tetrahedron Lett. 2006; 47: 7987
    • 3c Joucla L. Popowyca F. Lozach O. Meijer L. Joseph B. Helv. Chim. Acta 2007; 90: 753
    • 3d For another approach through this disconnection via photocyclization of indole-3-acetamide derivatives, see: Li Z. Lu N. Wang L. Zhang W. Eur. J. Org. Chem. 2012; 1019
  • 4 Baudoin O. Cesario M. Guenard D. Gueritte F. J. Org. Chem. 2002; 67: 1199
  • 5 Although it was not shown in Scheme 1, another strategy via the seven-membered C-ring formation through free radical cyclization of N-[2-(1H-indol-2-yl)phenyl]-N-benzyl-2-iodoacetamides has been reported, see: Bremner JB. Sengpracha W. Tetrahedron 2005; 61: 5489
  • 7 Ferenc D. Opatz T. Synthesis 2008; 3941
  • 8 For the original study on the indolization from isonitrile 9, see: Peng G. Chen X. Fukuyama T. J. Am. Chem. Soc. 1994; 116: 3127

    • N-Protected 2-aminobenzaldehyde 11 was generally prepared from o-nitrobenzaldehyde in 4 steps. For recent examples, see:
    • 9a Storz MP. Maurer CK. Zimmer C. Wagner N. Brengel C. de Jong JC. Lucas S. Musken M. Haussler S. Steinbach A. Hartmann RW. J. Am. Chem. Soc. 2012; 134: 16143
    • 9b Raven W. Selig P. Org. Lett. 2014; 16: 5192
    • 10a Lee SJ. Seo H.-A. Cheon C.-H. Adv. Synth. Catal. 2016; 358: 1566
    • 10b Seo H.-A. Cheon C.-H. J. Org. Chem. 2016; 81: 7917
  • 11 For the application of this approach toward skeleton-divergent total syntheses of rutaecarpine and luotonin A, see: Kwon SH. Seo H.-A. Cheon C.-H. Org. Lett. 2016; 18: 5280
  • 12 For similar competing pathways from cyanide adducts II of ald­imines, see: Seo H.-A. Cho Y.-H. Lee Y.-S. Cheon C.-H. J. Org. Chem. 2015; 80: 11993
  • 13 For previous examples of the formation of iminonitriles from the cyanide adducts II of aldimines without any additives, see: Jursic BS. Douelle F. Bowdy K. Stevens ED. Tetrahedron Lett. 2002; 43: 5361

    • For previous examples of the reduction of nitro group with zinc metal, see:
    • 14a Ferenc D. Opatz T. Org. Lett. 2006; 8: 4473
    • 14b Kratz F. Warnecke A. J. Org. Chem. 2008; 73: 1546
    • 14c Higuchi K. Sato Y. Tsuchimochi M. Sugiura K. Hatori M. Kawasaki T. Org Lett. 2009; 11: 197
    • 14d Cid MB. Duce S. Morales S. Rodrigo E. Ruano JL. G. Org. Lett. 2010; 12: 3586
    • 14e Xu Z. Hu W. Liu Q. Zhang L. Jia Y. J. Org. Chem. 2010; 75: 7626

      For previous examples of the difference in reactivity depending on Br substituents, see:
    • 15a Cho C.-G. Kim Y.-W. Lim Y.-K. Park J.-S. Lee H. Koo S. J. Org. Chem. 2002; 67: 290
    • 15b Gao L. Hwang G.-S. Ryu DH. J. Am. Chem. Soc. 2011; 133: 20708
    • 15c Shim SY. Kim JY. Nam M. Hwang G.-S. Ryu DH. Org Lett. 2016; 18: 160