Synlett 2017; 28(13): 1630-1635
DOI: 10.1055/s-0036-1588828
letter
© Georg Thieme Verlag Stuttgart · New York

Eosin Y-Sensitized Photocatalytic Reaction of Tertiary Aliphatic Amines with Arenesulfonyl Chlorides under Visible-Light Irradiation

Yuguo Cai
a   School of Chemistry Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China
b   Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China   Email: rhzhang@tongji.edu.cn
,
Ronghua Zhang*
a   School of Chemistry Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China
b   Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China   Email: rhzhang@tongji.edu.cn
,
Deli Sun
a   School of Chemistry Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China
b   Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China   Email: rhzhang@tongji.edu.cn
,
Song Xu
a   School of Chemistry Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China
b   Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China   Email: rhzhang@tongji.edu.cn
,
Qiguang Zhou
a   School of Chemistry Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China
b   Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China   Email: rhzhang@tongji.edu.cn
› Author Affiliations
We gratefully acknowledge financial support from the Natural Science Foundation of China (No. 20972113/B020502).
Further Information

Publication History

Received: 08 March 2017

Accepted after revision: 18 April 2017

Publication Date:
10 May 2017 (online)


Abstract

A mild, practical, and environmentally friendly route to vinyl sulfones and sulfonamides has been developed based on the reaction of aliphatic amines with arenesulfonyl chlorides in the presence of eosin Y as a photocatalyst under visible light. The method permits the selective formation of vinyl sulfones or sulfonamides, depending on the oxidation environment and solvent. A wide range of products were obtained in moderate to good yields under the optimized conditions.

Supporting Information

 
  • References and Notes

  • 1 Westenhoff S. Howard IA. Hodgkiss JM. Kirov KR. Bronstein HA. Williams CK. Greenham NC. Friend RH. J. Am. Chem. Soc. 2008; 130: 13653
  • 2 Füldner S. Mild R. Siegmund HI. Schroeder JA. Gruber M. König B. Green Chem. 2010; 12: 400
  • 3 Hari DP. König B. Org. Lett. 2011; 13: 3852
  • 4 Srivastava V. Yadav A. Yadav LS. Synlett 2013; 24: 465
  • 5 Srinivasan R. J. Am. Chem. Soc. 1963; 85: 3048
  • 6 Schultz DM. Yoon TP. Science 2014; 343: 1239176
  • 7 Narayanam JM. R. Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
  • 8 Miyake Y. Nakajima K. Nishibayashi Y. J. Am. Chem. Soc. 2012; 134: 3338
  • 9 Yoon TP. Ischay MA. Du J. Nat. Chem. 2010; 2: 527
  • 10 Ischay MA. Anzovino ME. Du J. Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
  • 11 Ischay MA. Lu Z. Yoon TP. J. Am. Chem. Soc. 2010; 132: 8572
  • 12 Narayanam JM. R. Tucker JW. Stephenson CR. J. J. Am. Chem. Soc. 2009; 131: 8756
  • 13 Condie AG. González-Gómez JC. Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464
  • 14 Nguyen JD. Tucker JW. Konieczynska MD. Stephenson CR. J. J. Am. Chem. Soc. 2011; 133: 4160
  • 15 Dai C. Narayanam JM. Stephenson CR. J. Nat. Chem. 2011; 3: 140
  • 16 Pirnot MT. Rankic DA. Martin DB. MacMillan DW. C. Science 2013; 339: 1593
  • 17 McNally A. Prier CK. MacMillan DW. C. Science 2001; 334: 1114
  • 18 Nicewicz DA. MacMillan DW. C. Science 2008; 322: 77
  • 19 Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
  • 20 Zou Y.-Q. Chen J.-R. Liu X.-P. Lu L.-Q. Davis R.-L. Jørgensen KA. Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 784
  • 21 Fan W. Li P. Angew. Chem. Int. Ed. 2014; 53: 12201
  • 22 Qi L. Chen Y. Angew. Chem. 2016; 128: 13506
  • 23 Sun H. Yang C. Gao F. Li Z. Xia W. Org. Lett. 2013; 15: 624
  • 24 Nakajima M. Lefebvre Q. Rueping M. Chem. Commun. 2014; 50: 3619
  • 25 Majek M. Jacobi von Wangelin AJ. Angew. Chem. Int. Ed. 2013; 52: 5919
  • 26 Xia J.-D. Deng G.-B. Zhou M.-B. Liu W. Xie P. Li J.-H. Synlett 2012; 23: 2707
  • 27 Maity S. Zhu M. Shinabery RS. Zheng N. Angew. Chem. Int. Ed. 2012; 51: 222
  • 28 Hari DP. Schroll P. König B. J. Am. Chem. Soc. 2012; 134: 2958
  • 29 Jiang H. Chen X. Zhang Y. Yu S. Adv. Synth. Catal. 2013; 355: 809
  • 30 Fukuzumi S. Mochizuki S. Tanaka T. J. Phys. Chem. 1990; 94: 722
  • 31 Dinnocenzo JP. Banach TE. J. Am. Chem. Soc. 1989; 111: 8646
  • 32 Lowry MS. Goldsmith JI. Slinker JD. Rohl R. Pascal RA. Jr. Malliaras GG. Bernhard S. Chem. Mater. 2005; 17: 5712
  • 33 Rueping M. Vila C. Koenigs RM. Poscharny K. Fabry DC. Chem. Commun. 2011; 47: 2360
  • 34 Rueping M. Zoller J. Fabry DC. Poscharny K. Koenigs RM. Weirich TE. Mayer J. Chem. Eur. J. 2012; 18: 3478
  • 35 Cherevatskaya M. Neumann M. Füldner S. Harlander C. Kümmel S. Dankesreiter S. Pfitzner A. Zeitler K. König B. Angew. Chem. Int. Ed. 2012; 51: 4062
  • 36 Xuan J. Feng Z.-J. Duan S.-W. Xiao W.-J. RSC Adv. 2012; 2: 4065
  • 37 Pitre SP. McTiernan CD. Ismaili H. Scaiano JC. J. Am. Chem. Soc. 2013; 135: 13286
  • 38 Hari DP. König B. Chem. Commun. 2014; 50: 6688
  • 39 Liu Q. Li Y.-N. Zhang H.-H. Chen B. Tung C.-H. Wu L.-Z. Chem. Eur. J. 2012; 18: 620
  • 40 Majek M. Filace F. Jacobi von Wangelin A. Beilstein J. Org. Chem. 2014; 10: 981
  • 41 Yoshino H. Ueda N. Niijima J. Sugumi H. Kotake Y. Koyanagi N. Yoshimatsu K. Asada M. Watanabe T. Nagasu T. Tsukahara K. Iijima A. Kitoh K. J. Med. Chem. 1992; 35: 2496
  • 42 Natarajan A. Guo Y. Harbinski F. Fan Y.-H. Chen H. Luus L. Diercks J. Aktas H. Chorev M. Halperin JA. J. Med. Chem. 2004; 47: 4979
  • 43 Gilbert AM. Caltabiano S. Koehn FE. Chen Z. Francisco GD. Ellingboe JW. Kharode Y. Mangine AM. Francis R. TrailSmith M. Gralnick D. J. Med. Chem. 2002; 45: 2342
  • 44 Nishimura T. Takiguchi Y. Hayashi T. J. Am. Chem. Soc. 2012; 134: 9086
  • 45 Noshi MN. El-awa A. Torres E. Fuchs PL. J. Am. Chem. Soc. 2007; 129: 11242
  • 46 Pandey G. Tiwari KN. Puranik VG. Org. Lett. 2008; 10: 3611
  • 47 Ravelli D. Montanaro S. Zema M. Fagnoni M. Albini A. Adv. Synth. Catal. 2011; 353: 3295
  • 48 Reddick JJ. Cheng J.-M. Roush WR. Org. Lett. 2003; 5: 1967
  • 49 Roush WR. Gwaltney SL. II. Cheng J. Scheidt KA. Mckerrow JH. Hansell E. J. Am. Chem. Soc. 1998; 120: 10994
  • 50 Frankel BA. Bentley M. Kruger RG. McCafferty DG. J. Am. Chem. Soc. 2004; 126: 3404
  • 51 Kudryavtsev KV. Bentley ML. McCafferty DG. Bioorg. Med. Chem. 2009; 17: 2886
  • 52 Shi F. Tse MK. Zhou S. Pohl MM. Radnik J. Hübner S. Jahnisch K. Brückner A. Beller M. J. Am. Chem. Soc. 2009; 131: 1775
  • 53 Moore JD. Herpel RH. Lichtsinn JR. Flynn DL. Hanson PR. Org. Lett. 2003; 5: 105
  • 54 Wallentin C.-J. Nguyen JD. Finkbeiner P. Stephenson CR. J. J. Am. Chem. Soc. 2012; 134: 8875
  • 55 Chen M. Huang Z.-T. Zheng Q.-Y. Org. Biomol. Chem. 2014; 12: 9337
  • 56 Lai J. Chang L. Yuan G. Org. Lett. 2016; 18: 3194
  • 57 Tian J. Loh T. Angew. Chem. Int. Ed. 2010; 49: 8417
  • 58 Furst L. Matsuura BS. Narayanam JM. R. Tucker JW. Stephenson CR. J. Org. Lett. 2010; 12: 3104
  • 59 Lazarides T. McCormick T. Du P. Luo G. Lindley B. Eisenberg R. J. Am. Chem. Soc. 2009; 131: 9192
  • 60 Encinas MV. Rufs AM. Bertolotti SG. Previtali CM. Polymer 2009; 50: 2762
  • 61 (E)-N,N-Diethyl-2-(4-toluenesulfonyl)ethylenamine (3a); Typical Procedure A 10 mL round-bottomed flask equipped with magnetic stirring bar was charged with TsCl (1a; 0.2 mmol), Et3N (2a; 1 mmol), eosin Y (3 mol%), K2HPO4 (1.5 equiv), and 1:2 EtOH–acetone (6 mL). The solution was then irradiated with 3 W blue LEDs at –5 to 5 °C under air. When the reaction was complete (TLC), the solvent was removed under reduced pressure and the crude product was purified by column chromatography [silica gel, PE–EtOAc (5:1)] to give a brown oil; yield: 31.48 mg (67%). 1H NMR (400 MHz, CDCl3): δ = 7.75 (d, J = 8.2 Hz, 2 H), 7.31 (d, J = 12.7 Hz, 1 H), 7.27 (d, J = 8.0 Hz, 2 H), 4.91 (d, J = 12.7 Hz, 1 H), 3.18 (br d, 4 H), 2.41 (s, 3 H), 1.17 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 148.5, 142.3, 141.8, 128.5, 125.9, 91.4, 49.8, 42.4, 21.2, 14.5 11.0. HRMS (ESI): m/z [M + Na]+ calcd for C13H19NNaO2S+: 276.1020; found: 276.1029.
  • 62 N,N-Diethyl-4-toluenesulfonamide (4a); Typical Procedure A 10 mL round-bottomed flask equipped with magnetic stirring bar was charged with TsCl (1a; 0.2 mmol), Et3N (2a; 1 mmol), eosin Y (3 mol%), K2HPO4 (1.5 equiv), and 1:1 MeCN–H2O (6 mL). The solution was then irradiated with 12 W blue LEDs at r.t. under an O2 atmosphere. When the reaction was complete (TLC), the solvent was removed under reduced pressure and the crude product was purified by column chromatography [silica gel, PE–EtOAc (5:1)] to give a white solid; yield: 34.06 mg (75%); mp 60–62 °C. 1H NMR (400 MHz, CDCl3): δ = 7.70 (d, J = 8.1 Hz, 2 H), 7.30 (d, J = 8.0 Hz, 2 H), 3.23 (q, J = 7.2 Hz, 4 H), 2.43 (s, 3 H), 1.13 (t, J = 7.1 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 142.8, 137.2, 129.4, 126.9, 41.9, 21.3, 14.0. HRMS (ESI): m/z [M + Na]+ calcd for C11H17NNaO2S+: 250.0872; found: 250.0898.