Synlett 2017; 28(09): 1079-1082
DOI: 10.1055/s-0036-1588948
letter
© Georg Thieme Verlag Stuttgart · New York

Fe(III)/Pyridine-Mediated Decarboxylative Nitration of α,β-Unsaturated Acids with Iron Nitrate

Zan Yang
College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. of China   Email: yangtaozcs@126.com   Email: zhoucongsh@126.com
,
Jiao Li
College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. of China   Email: yangtaozcs@126.com   Email: zhoucongsh@126.com
,
Jie Hua
College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. of China   Email: yangtaozcs@126.com   Email: zhoucongsh@126.com
,
Tao Yang*
College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. of China   Email: yangtaozcs@126.com   Email: zhoucongsh@126.com
,
Jianmin Yi
College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. of China   Email: yangtaozcs@126.com   Email: zhoucongsh@126.com
,
Congshan Zhou*
College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. of China   Email: yangtaozcs@126.com   Email: zhoucongsh@126.com
› Author Affiliations
Further Information

Publication History

Received: 23 November 2016

Accepted after revision: 14 January 2017

Publication Date:
06 February 2017 (online)


Abstract

A novel and efficient method for the synthesis of (E)-nitroolefins in moderate to excellent yields is developed by Fe(III)/pyridine-mediated decarboxylative nitration of α,β-unsaturated acids with iron nitrate. A series of α,β-unsaturated acids are well tolerated in this procedure.

Supporting Information

 
  • References and Notes

    • 1a Baudoin O. Angew. Chem. Int. Ed. 2007; 46: 1373-1373
    • 1b Weaver JB, Recio A, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846-1846
    • 1c Rodríguez N, Goossen LJ. Chem. Soc. Rev. 2011; 40: 5030-5030
    • 1d Shang R, Liu L. Sci. China Chem. 2011; 54: 1670-1670
    • 1e Dzik WI, Lange PP, Goossen LJ. Chem. Sci. 2012; 3: 2671-2671
    • 1f Xuan J, Zhang Z, Xiao W. Angew. Chem. Int. Ed. 2015; 54: 15632-15632
    • 1g Shen C, Zhang P, Sun Q, Bai S, Hor TS. A, Liu X. Chem. Soc. Rev. 2015; 44: 291-291
    • 1h Borah AJ, Yan G. Org. Biomol. Chem. 2015; 13: 8094-8094
    • 1i Park K, Lee S. RSC Adv. 2013; 3: 14165-14165

      Selected decarboxylative C–C/C–X bond formation:
    • 2a Goossen LJ, Deng G, Levy LM. Science 2006; 313: 662-662
    • 2b Liu C, Wang X, Li Z, Cui L, Li C. J. Am. Chem. Soc 2015; 137: 9820-9820
    • 2c Tang J, Biafora A, Gossen LJ. Angew. Chem. Int. Ed. 2015; 54: 13130-13130
    • 2d Liu Z, Wang L, Liu D, Wang Z. Synlett 2015; 26: 2849-2849
    • 2e Wang H, Guo L, Wang S, Duan X. Org. Lett. 2015; 17: 3054-3054
    • 2f Chen L, Ju L, Bustin KA, Hoover JM. Chem. Commun. 2015; 51: 15059-15059
    • 2g Suresh R, Kumaran RS, Senthilkumar V, Muthusubramanian S. RSC Adv. 2014; 4: 31685-31685
    • 2h Rong G, Mao J, Yan H, Zheng Y, Zhang G. J. Org. Chem. 2015; 80: 7652-7652
    • 2i Xue N, Guo R, Tu X, Luo W, Deng W, Xiang J. Synlett 2016; 27: 2695-2695
    • 2j Wang Z, Zhu L, Yin F, Su Z, Li Z, Li C. J. Am. Chem. Soc. 2012; 134: 4258-4258
    • 2k Yin F, Wang Z, Li Z, Li C. J. Am. Chem. Soc. 2012; 134: 10401-10401
    • 2l Liu X, Wang Z, Cheng X, Li C. J. Am. Chem. Soc. 2012; 134: 14330-14330
    • 3a Zhu L, Lei N, Miao Z, Sheng C, Zhuang C, Yao J, Zhang W. Chin. J. Chem. 2012; 30: 139-139
    • 3b Kemme ST, Šmejkal T, Breit B. Adv. Synth. Catal. 2008; 350: 989-989
    • 3c Concellón JM, Concellón C. J. Org. Chem. 2006; 71: 1728-1728
    • 3d Patra T, Nandi S, Sahoo SK, Maiti D. Chem. Commun. 2016; 52: 1432-1432
    • 3e Cui L, Chen H, Liu C, Li C. Org. Lett. 2016; 18: 2188-2188
    • 4a Zhang L, Hang Z, Liu Z. Angew. Chem. Int. Ed. 2016; 55: 236-236
    • 4b Yin J, Li Y, Zhang R, Jin K, Duan C. Synthesis 2014; 46: 607-607
    • 4c Ghosh M, Mishra S, Monir K, Hajra A. Org. Biomol. Chem. 2015; 13: 309-309
    • 4d Gao B, Xie Y, Shen Z, Yang L, Huang H. Org. Lett. 2015; 17: 4986-4986
    • 4e Ji J, Liu P, Sun P. Chem. Commun. 2015; 51: 7546-7546
    • 4f Xu Y, Tang X, Hu W, Wu W, Jiang H. Green. Chem. 2014; 16: 3720-3720
    • 4g Mai W, Song G, Sun G, Yang L, Yuan J, Xiao Y, Mao P, Qu L. RSC Adv. 2013; 3: 19264-19264
    • 4h Wu Y, Liu L, Yan K, Xu P, Gao Y, Zhao Y. J. Org. Chem. 2014; 79: 8118-8118
    • 4i Zhao J, Zhou W, Han J, Li G, Pan Y. Tetrahedron Lett. 2013; 54: 6507-6507
    • 5a Ballini R, Bosica G, Fiorini D, Palmieri A, Petrini M. Chem. Rev. 2005; 105: 933-933
    • 5b Mase N, Watanabe K, Yoda H, Takabe K, Tanaka F, Barbas CF. III. J. Am. Chem. Soc. 2006; 128: 4966-4966
    • 5c Bui T, Syed S, Barbas CF. III. J. Am. Chem. Soc. 2009; 131: 8758-8758
    • 5d Reddy MA, Jain N, Yada D, Kishore C, Vangala JR, Surendra PR, Addlagatta A, Kalivendi SV, Sreedhar B. J. Med. Chem. 2011; 54: 6751-6751
    • 5e Zheng B, Wang H, Han Y, Liu C, Peng Y. Chem. Commun. 2013; 49: 4561-4561
    • 5f Chandrasekhar S, Kumar CP, Kumar TP, Haribabu K, Jagadeesh B, Lakshmib JK, Mainkar PS. RSC Adv. 2014; 4: 30325-30325
    • 5g Zhang H, Dong D, Wang Z. Synthesis 2016; 48: 131-131
    • 5h Halimehjani AZ, Namboothiri IN. N, Hooshmand SE. RSC Adv. 2014; 4: 31261-31261
    • 5i Yan G, Borah AJ, Wang L. Org. Biomol. Chem. 2014; 12: 6049-6049
  • 6 Das JP, Sinha P, Roy S. Org. Lett. 2002; 4: 3055-3055
    • 7a Messere A, Gentili A, Garella I, Temussi F, Blasio BD, Fiorentino A. Synth. Commun. 2004; 34: 3317-3317
    • 7b Ramgopal S, Ramesh K, Chakradhar A, Maasi Reddy N, Rajanna KC. Tetrahedron Lett. 2007; 48: 4043-4043
    • 7c Rokade BV, Prabhu KR. Org. Biomol. Chem. 2013; 11: 6713-6713
    • 7d Manna S, Jana S, Saboo T, Maji A, Maiti D. Chem. Commun. 2013; 49: 5286-5286
  • 8 Maity S, Manna S, Rana S, Naveen T, Mallick A, Maiti D. J. Am. Chem. Soc. 2013; 135: 3355-3355
  • 9 Baruah D, Pahari P, Konwar D. Tetrahedron Lett. 2015; 56: 2418-2418
    • 10a Yang H, Sun P, Zhu Y, Yan H, Lu L, Qu X, Li T, Mao J. Chem. Commun. 2012; 48: 7847-7847
    • 10b Cohen T, Schambach RA. J. Am. Chem. Soc. 1970; 92: 3189-3189
    • 10c Fromm A, Wullen CV, Hackenberger D, Goossen LJ. J. Am. Chem. Soc. 2014; 136: 10007-10007
    • 11a Taniguchi T, Fujii T, Ishibashi H. J. Org. Chem. 2010; 75: 8126-8126
    • 11b Naveen T, Maity S, Sharma U, Maiti D. J. Org. Chem. 2013; 78: 5949-5949
    • 11c Jiang M, Yang H, Li Y, Jia Z, Fu H. RSC Adv. 2013; 3: 25602-25602
    • 12a Cui Z, Shang X, Shao X, Liu Z. Chem. Sci. 2012; 3: 2853-2853
    • 12b Rong G, Liu D, Lu L, Yan H, Zheng Y, Chen Y, Mao Y. Tetrahedron. 2014; 70: 5033-5033
    • 12c Zhang N, Yang D, Wei W, Yuan L, Nie F, Tian L, Wang H. J. Org. Chem. 2015; 80: 3258-3258
    • 12d Jiang Q, Jia J, Xu B, Zhao A, Guo C. J. Org. Chem. 2015; 80: 3586-3586
  • 13 Shang R, Fu Y, Wang Y, Xu Q, Yu HZ, Liu L. Angew. Chem. Int. Ed. 2009; 48: 9350-9350
  • 14 Procedure for the Synthesis of β-Nitrostyrene The mixture of cinnamic acid (0.5 mmol), Fe(NO3)3 (1.0 mmol), pyridine (0.5 mmol), and toluene (2 mL) was stirred at 100 °C for 12 h. After cooling to r.t., the reaction mixture was washed with H2O (10 mL) and extracted by EtOAc (3×). The organic phase was dried with anhydrous MgSO4. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (15% EtOAc–n-hexane) to afford pure product. Yellow solid (90%, 77 mg). 1H NMR (400 MHz, CDCl3): δ = 7.37–7.57 (m, 5 H), 7.59 (d, J = 13.7 Hz, 1 H), 8.01 (d, J = 13.7 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ =129.16, 129.43, 130.14, 132.15, 137.19, 139.06.