Synlett 2018; 29(03): 330-335
DOI: 10.1055/s-0036-1589116
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Copper-Promoted Hiyama-Type Carbon–­Carbon Cross-Coupling Reactions of Dihetaryl Disulfides as ­Electrophiles

Ming-Xia Liu
a   Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu 730070, P. R. of China   Email: quanzhengjun@hotmail.com   Email: wangxicun@nwnu.edu.cn
,
Hai-Peng Gong
b   College of Natural Science, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, Gansu 730070, P. R. of China
,
Zheng-Jun Quan*
a   Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu 730070, P. R. of China   Email: quanzhengjun@hotmail.com   Email: wangxicun@nwnu.edu.cn
,
Xi-Cun Wang*
a   Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu 730070, P. R. of China   Email: quanzhengjun@hotmail.com   Email: wangxicun@nwnu.edu.cn
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China (Nos. 21362032, 21362031, and 21562036) and from the Scientific and Technological Innovation Engineering program of Northwest Normal University (NWNU-LKQN-15-1).
Further Information

Publication History

Received: 14 July 2017

Accepted after revision: 11 September 2017

Publication Date:
26 October 2017 (online)


Abstract

Dihetaryl disulfides were used as electrophiles in a palladium-catalyzed carbon–carbon cross-coupling reaction with arylsilanes to ­realize a Hiyama-type reaction. This unique transformation shows high reactivity, excellent functional-group tolerance, and mild reaction conditions, making it an attractive alternative to conventional cross-coupling approaches for carbon−carbon bond construction.

Supporting Information

 
  • References and Notes

    • 1a Gouda K.-i. Hagiwara E. Hatanaka Y. Hiyama T. J. Org. Chem. 1996; 61: 7232
    • 1b Molander GA. Lannazzo L. J. Org. Chem. 2011; 76: 9182
    • 1c Mino T. Shirae Y. Saito T. Sakamoto M. Fujita T. J. Org. Chem. 2006; 71: 9499
    • 1d Raders SM. Kingston JV. Verkade JG. J. Org. Chem. 2010; 75: 1744
    • 1e Bi L. Georg GI. Org. Lett. 2011; 13: 5413
    • 1f Denmark SE. Sweis RF. J. Am. Chem. Soc. 2004; 126: 4876
    • 2a Martin R. Buchwald SL. J. Am. Chem. Soc. 2007; 129: 3844
    • 2b Roche AJ. Abboud KA. Dolbier WR. Jr. J. Org. Chem. 2015; 80: 5355
    • 2c Hua XY. Masson-Makdissi J. Sullivan RJ. Newman SG. Org. Lett. 2016; 18: 5312
    • 2d Phan NT. S. Brown DH. Styring P. Green Chem. 2004; 6: 526
    • 2e Netherton MR. Fu GC. Adv. Synth. Catal. 2004; 346: 1525
    • 3a Zhao T. Ghosh P. Martinez Z. Liu X. Meng X. Darensbourg MY. Organometallics 2017; 36: 1822
    • 3b Stefani HA. Cella R. Vieira AS. Tetrahedron 2007; 63: 3623
    • 3c Ke H. Chen X. Zou G. J. Org. Chem. 2014; 79: 7132
    • 3d Halima TB. Zhang W. Yalaoui I. Hong X. Yang Y.-F. Houk KN. Newman SG. J. Am. Chem. Soc. 2017; 139: 1311
    • 3e Sharma P. Rohilla S. Jain N. J. Org. Chem. 2017; 82: 1105
    • 3f Frisch AC. Beller M. Angew. Chem. Int. Ed. 2005; 44: 674
    • 3g Woerly EM. Cherney AH. Davis EK. Burke MD. J. Am. Chem. Soc. 2010; 132: 6941
    • 4a Hassan J. Sévignon M. Gozzi C. Schulz E. Lemaire M. Chem. Rev. 2002; 102: 1359
    • 4b Littke AF. Fu GC. Angew. Chem. Int. Ed. 2002; 41: 4176
    • 4c Suzuki T. Watanabe S. Kobayashi S. Tanino KJ. Org. Lett. 2017; 19: 922
    • 4d Stille JK. Angew. Chem. Int. Ed. 1986; 25: 508
    • 4e Garcia-Martinez JC. Lezutekong R. Crooks RM. J. Am. Chem. Soc. 2005; 127: 5097
    • 4f Su W. Urgaonkar S. McLaughlin PA. Verkade JG. J. Am. Chem. Soc. 2004; 126: 16433
    • 4g Guo Y. Quan T. Lu Y. Luo T. J. Am. Chem. Soc. 2017; 139: 6815
    • 4h Zhou W.-J. Wang K.-H. Wang J.-X. J. Org. Chem. 2009; 74: 5599
    • 5a Haraguchi R. Tanazawa S.-g. Tokunaga N. Fukuzawa S.-i. Org. Let. 2017; 19: 1646
    • 5b Kienle M. Knochel P. Org. Lett. 2010; 12: 2702
    • 5c Liu J. Deng Y. Wang H. Zhang H. Yu G. Wu B. Zhang H. Li Q. Marder TB. Yang Z. Lei A. Org. Lett. 2008; 10: 2661
    • 5d Negishi E.-i. Anastasia L. Chem. Rev. 2003; 103: 1979
    • 5e Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
    • 5f Tao J.-L. Yang B. Wang Z.-X. J. Org. Chem. 2015; 80: 12627
    • 6a Hiyama T. J. Organomet. Chem. 2002; 653: 58
    • 6b Hatanaka Y. Goda K.-i. Okahara Y. Hiyama T. Tetrahedron. 1994; 50: 8301
    • 6c Hirabayashi K. Mori A. Kawashima J. Suguro M. Nishihara Y. Hiyama T. J. Org. Chem. 2000; 65: 5342
    • 6d Nakao Y. Oda T. Sahoo AK. Hiyama T. J. Organomet. Chem. 2003; 687: 570
    • 7a Saijo H. Sakaguchi H. Ohashi M. Ogoshi S. Organometallics 2014; 33: 3669
    • 7b Pierrat P. Gros P. Fort Y. Org. Lett. 2005; 7: 697
    • 8a Yuen OY. So CM. Man HW. Kwong FY. Chem. Eur. J. 2016; 22: 6471
    • 8b Zhang S. Cai J. Yamamoto Y. Bao M. J. Org. Chem. 2017; 82: 5974
    • 9a Domin D. Benito-Garagorri D. Mereiter K. Froehlich J. Kirchner K. Organometallics 2005; 24: 3957
    • 9b Lee J.-Y. Fu GC. J. Am. Chem. Soc. 2003; 125: 5616
    • 9c Sakon A. Ii R. Hamasaka G. Uozumi Y. Shinagawa T. Shimomura O. Nomura R. Ohtaka A. Organometallics 2017; 36: 1618
    • 9d Dai X. Strotman NA. Fu GC. J. Am. Chem. Soc. 2008; 130: 3302
    • 10a Itami K. Kamei T. Yoshida J.-i. J. Am. Chem. Soc. 2003; 125: 14670
    • 10b Nakao Y. Imanaka H. Sahoo AH. Yada A. Hiyama T. J. Am. Chem. Soc. 2005; 127: 6952
    • 10c Gurung SK. Thapa S. Vangala AS. Giri R. Org. Lett. 2013; 15: 5378
    • 10d Nokami T. Tomida Y. Kamei T. Itami K. Yoshida J.-i. Org. Let. 2006; 8: 729
    • 11a Zhang L. Wu J. J. Am. Chem. Soc. 2008; 130: 12250
    • 11b Cheng K. Wang C. Ding Y. Song Q. Qi C. Zhang X.-M. J. Org. Chem. 2011; 76: 9261
    • 11c Shi W.-J. Yu D.-G. Zhao H.-W. Wang Y. Cao Z.-C. Zhang L.-S. Yu D.-G. Shi Z.-J. Adv. Synth. Catal. 2016; 358: 2410
    • 11d Chau M. Lee HW. Lau CP. Kwong FY. Org. Lett. 2009; 11: 317
    • 11e Zhang L. Qing J. Yang P. Wu J. Org. Lett. 2008; 10: 4971
    • 11f Seganish WM. De Shong P. J. Org. Chem. 2004; 69: 1137
    • 11g Melvin PR. Hazari N. Beromi MM. Shah HP. Williams MJ. Org. Lett. 2016; 18: 5784
    • 12a Liu Y. Wang H. Wang C. Wan J.-P. Wen C. RSC Adv. 2013; 3: 21369
    • 12b Du Y. Yang H.-C. Xu X.-L. Wu J. Xu Z.-K. ChemCatChem 2015; 7: 3822
    • 12c Wang H. Huang G. Sun Y. Liu Y. J. Chem. Res. 2014; 38: 96
    • 12d Wang G. Guo Y. Lü Y. Wang X. Quan Z. Chin. J. Org. Chem. 2016; 36: 1375

      For examples of C–C coupling, see:
    • 13a Quan Z.-J. Lv Y. Wang X.-C. Jing F.-Q. Jia X.-D. Huo C.-D. Adv. Synth. Catal. 2014; 356: 325
    • 13b Du B.-X. Da Y.-X. Zhang Z. Adv. Synth. Catal. 2015; 357: 1270
    • 13c Wei K.-J. Quan Z.-J. Zhang Z. Da Y.-X. Wang X.-C. RSC Adv. 2016; 6: 78059

      For examples of C–N coupling, see:
    • 14a Wei K.-J. Quan Z.-J. Zhang Z. Da Y.-X. Wang X.-C. Synlett 2016; 27: 1743
    • 14b Wei K.-J. Quan Z.-J. Zhang Z. Da Y.-X. Wang X.-C. Org. Biomol. Chem. 2016; 14: 2395
  • 15 For examples of C–S coupling, see: Guo Y. Quan Z.-J. Da Y.-X. Zhang Z. Wang X.-C. RSC Adv. 2015; 5: 45479
    • 16a Kappe CO. Tetrahedron 1993; 49: 6937
    • 16b Kappe CO. Eur. J. Med. Chem. 2000; 35: 1043
    • 16c Dallinger D. Stadler A. Kappe CO. Pure Appl. Chem. 2004; 76: 1017
  • 17 Deres K. Schröder CH. Paessens A. Goldmann S. Hacker HJ. Weber O. Kräemer T. Niewöhner U. Pleiss U. Stoltefuss J. Graef E. Koletzki D. Masantschek RN. A. Reimann A. Jaeger R. Groß R. Beckermann B. Schlemmer K.-H. Haebich D. Rübsamen-Waigmann H. Science 2003; 299: 893
  • 18 Ethyl 4-Methyl-2,6-diphenylpyrimidine-5-carboxylate (3a); Typical Procedure A Schlenk tube was charged with disulfide 1a (0.2 mmol, 0.1094 g), Pd(OAc)2 (3 mol%), CuTC (3.0 equiv), and PCy3 (6 mol%), and the tube was sealed. PhSi(OMe)3 (2a; 3.0 equiv, 0.6 mmol, 0.1188 g), TBAF (3.0 equiv, 0.6 mmol), and THF (2 mL) were then injected by syringe into the sealed tube under N2, and the mixture was stirred at 60 °C for 24 h until the reaction as complete (TLC; silica gel). The mixture was cooled to r.t., the reaction was quenched with sat. aq NH4Cl (2 mL), and the mixture was extracted with EtOAc (3 × 10 mL). The organic layers were combined, dried (MgSO4), and concentrated in vacuo, and the resulting residue was purified column chromatography [silica gel, EtOAc–PE (1:50)] to give a white solid; yield: 45 mg (72%); mp 66–67 °C. 1H NMR (400 MHz, CDCl3): δ = 8.51–8.49 (m, 2 H), 7.71–7.69 (m, 2 H), 7.44–7.41 (m, 6 H), 4.15 (q, J = 7.2 Hz, 2 H), 2.64 (s, 3 H), 1.03 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 168.44, 165.40, 163.68, 163.65, 138.23, 137.10, 131.11, 130.04, 128.69, 128.54, 128.52, 128.49, 123.40, 61.82, 22.87, 13.70. HRMS (ESI+): m/z [M + H]+ Calcd for C20H19N2O2: 319.1441; found: 319.1447.
  • 19 Ethyl 2-(Benzylthio)-4-methyl-6-phenylpyrimidine-5-carboxylate (8) Oil; yield: 12 mg (16%). 1H NMR (600 MHz, CDCl3): δ = 7.63–7.56 (m, 2 H), 7.45–7.43 (m, 3 H), 7.37–7.35 (m, 2 H), 7.20–7.17 (m, 3 H), 4.46 (s, 2 H), 4.16 (q, J = 7.2 Hz, 2 H), 2.57 (s, 3 H), 1.03 (t, J = 7.2 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 170.65, 168.01, 165.60, 163.75, 141.16, 130.05, 129.08, 128.65, 128.40 (2 C), 128.31, 128.28, 127.13, 125.83, 61.70, 35.34, 22.59, 13.58. HRMS (ESI+): m/z [M + H]+ Calcd for C21H21N2O2S: 365.1318; found: 365.1315.