Synlett 2018; 29(10): 1379-1384
DOI: 10.1055/s-0036-1591562
letter
© Georg Thieme Verlag Stuttgart · New York

Base-Promoted Direct Oxyphosphorylation of Alkynes with H-Phosphine Oxides in the Presence of Water

Wenwu Zhong
Chongqing Medical and Pharmaceutical College, Chongqing Engineering Technology Research Center of Pharmaceutical Preparation, Chongqing 401331, P. R. of China   Email: shilei1987081706@126.com   Email: xuezengcqyz@163.com
,
Tao Tan
Chongqing Medical and Pharmaceutical College, Chongqing Engineering Technology Research Center of Pharmaceutical Preparation, Chongqing 401331, P. R. of China   Email: shilei1987081706@126.com   Email: xuezengcqyz@163.com
,
Lei Shi*
Chongqing Medical and Pharmaceutical College, Chongqing Engineering Technology Research Center of Pharmaceutical Preparation, Chongqing 401331, P. R. of China   Email: shilei1987081706@126.com   Email: xuezengcqyz@163.com
,
Xue Zeng*
Chongqing Medical and Pharmaceutical College, Chongqing Engineering Technology Research Center of Pharmaceutical Preparation, Chongqing 401331, P. R. of China   Email: shilei1987081706@126.com   Email: xuezengcqyz@163.com
› Author Affiliations
New Technology Extension Program of Chongqing Municipal Education Commission (Grant No. GZTG 201604). Traditional Chinese Medical Project of Chongqing Municipal Health and Family Planning Commission (Grant No. zy20150242). Medical scientific research project of Chongqing Municipal Health and Family Planning Commission (Grant No. 2015MSXM099)

Further Information

Publication History

Received: 03 February 2018

Accepted after revision: 14 March 2018

Publication Date:
13 April 2018 (online)


Abstract

We have developed a simple method for the oxyphosphorylation of arylalkynes to give β-keto phosphine oxides without the assistance of any transition metal. An inorganic base promoted the oxyphosphorylation and water played a synergistic role in the formation of various β-keto phosphine oxides. The reaction showed a wide structural scope and broad functional-group tolerance, and it proceeded under mild reaction conditions. This method solved the problem of metal dependence in the oxyphosphorylation of alkynes, providing a potential application in organic chemistry. Control experiments revealed the mechanism of the oxyphosphorylation and the synergistic role played by water in the radical process.

Supporting Information

 
  • References

    • 1a Mikolajczyk M. Bałczewski P. Top. Curr. Chem. 2003; 223: 161
    • 1b Rahimi R. Abdollahi M. Pestic. Biochem. Physiol. 2007; 88: 115
    • 1c Jokanović M. Toxicol. Lett. 2009; 190: 107
    • 1d Guang J. Zhao JC.-G. Tetrahedron Lett. 2013; 54: 5703
    • 1e Worek F. Thiermann H. Pharmacol. Ther. 2013; 139: 249
    • 1f Chowdhary S. Bhattacharyya R. Banerjee D. Clin. Chim. Acta 2014; 431: 66
    • 2a Sittiwong W. Cordonier EL. Zempleni J. Dussault PH. Bioorg. Med. Chem. Lett. 2014; 24: 5568
    • 2b Auberger N. Gravier-Pelletier C. Le Merrer Y. Eur. J. Org. Chem. 2009; 2009: 3323
    • 2c Balg C. Blais SP. Bernier S. Huot JL. Couture M. Lapointe J. Chênevert R. Bioorg. Med. Chem. 2007; 15: 295
    • 3a Darvish F. Movassagh B. Erfani M. Arabian J. Chem. 2015; 8: 865
    • 3b Liu C. Zhu M. Wei W. Yang D. Cui H. Liu X. Wang H. Org. Chem. Front. 2015; 2: 1356
    • 3c Pramanik MM. D. Rastogi N. Org. Biomol. Chem. 2016; 14: 1239
    • 3d Hu D.-Y. Li M.-S. Zhong W.-W. Ji J.-X. Zhu J. Wei W. Zhang Q. Cheng M. Chin. Chem. Lett. 2016; 27: 1691
    • 4a Roy S. Spilling CD. Org. Lett. 2010; 12: 5326
    • 4b Radwan-Olszewska K. Palacios F. Kafarski P. J. Org. Chem. 2011; 76: 1170
    • 4c Maji B. Yamamoto H. Angew. Chem. 2014; 126: 14700
    • 4d Sung HJ. Mang JY. Kim DY. J. Fluorine Chem. 2015; 178: 40
    • 4e Zhou Y. Rao C. Mai S. Song Q. J. Org. Chem. 2016; 81: 2027
    • 4f Koprowski M. Szymańska D. Bodzioch A. Marciniak B. Różycka-Sokołowska E. Bałczewski P. Tetrahedron 2009; 65: 4017
  • 5 Hamashima Y. Suzuki T. Takano H. Shimura Y. Tsuchiya Y. Moriya K.i. Goto T. Sodeoka M. Tetrahedron 2006; 62: 7168
    • 6a Sano S. Sumiyoshi H. Handa A. Tokizane R. Nakao M. Tetrahedron Lett. 2015; 56: 4686
    • 6b Yamazaki T. Mano N. Hikage R. Kaneko T. Kawasaki-Takasuka T. Yamada S. Tetrahedron 2015; 71: 8059
    • 7a Louaisil N. Rabasso N. Fadel A. Tetrahedron 2009; 65: 8587
    • 7b Szewczyk MZ. Rapp M. Virieux D. Pirat JL. Koroniak H. New J. Chem. 2017; 41: 6322
  • 8 Yang G. Shen C. Zhang L. Zhang W. Tetrahedron Lett. 2011; 52: 5032
  • 9 Milburn RR. McRae K. Chan J. Tedrow J. Larsen R. Faul M. Tetrahedron Lett. 2009; 50: 870
    • 10a Wei W. Ji J.-X. Angew. Chem. 2011; 123: 9263
    • 10b Chen X. Li X. Chen X.-L. Qu L.-B. Chen J.-Y. Sun K. Liu Z.-D. Bi W.-Z. Xia Y.-Y. Wu H.-T. Zhao Y.-F. Chem. Commun. 2015; 51: 3846
    • 10c Zeng Y.-F. Tan D.-H. Lv W.-X. Li Q. Wang H. Eur. J. Org. Chem. 2015; 2015: 4335
    • 10d Zhang P. Zhang L. Gao Y. Xu J. Fang H. Tang G. Zhao Y. Chem. Commun. 2015; 51: 7839
    • 10e Tang P. Zhang C. Chen E. Chen B. Chen W. Yu Y. Tetrahedron Lett. 2017; 58: 2157
    • 10f Yi N. Wang R. Zou H. He W. Fu W. He W. J. Org. Chem. 2015; 80: 5023
    • 11a Gutierrez V. Mascaró E. Alonso F. Moglie Y. Radivoy G. RSC Adv. 2015; 5: 65739
    • 11b Zhou M. Chen M. Zhou Y. Yang K. Su J. Du J. Song Q. Org. Lett. 2015; 17: 1786
    • 11c Peng P. Lu Q. Peng L. Liu C. Wang G. Lei A. Chem. Commun. 2016; 52: 12338
    • 11d Zhong W.-W. Zhang Q. Li M.-S. Hu D.-Y. Cheng M. Du F.-T. Ji J.-X. Wei W. Synth. Commun. 2016; 46: 1377
    • 12a Xie L. Yuan R. Wang R. Peng Z. Xiang J. He W. Eur. J. Org. Chem. 2014; 2014: 2668
    • 12b Xiang J. Yi N. Wang R. Lu L. Zou H. Pan Y. He W. Tetrahedron 2015; 71: 694
  • 13 Zhou Y. Zhou M. Chen M. Su J. Du J. Song Q. RSC Adv. 2015; 5: 103977
  • 14 Zhou M. Zhou Y. Song Q. Chem. Eur. J. 2015; 21: 10654
    • 15a Li L. Huang W. Chen L. Dong J. Ma X. Peng Y. Angew. Chem. Int. Ed. 2017; 56: 10539
    • 15b Liang W. Zhang Z. Yi D. Fu Q. Chen S. Yang L. Du F. Ji J. Wei W. Chin. J. Chem. 2017; 35: 1378
    • 15c Zhang Z. Yi D. Fu Q. Liang W. Chen S.-Y. Yang L. Du F.-T. Ji J.-X. Wei W. Tetrahedron Lett. 2017; 58: 2417
    • 15d Zhou P. Hu B. Li L. Rao K. Yang J. Yu F. J. Org. Chem. 2017; 82: 13268
    • 15e Ke J. Tang Y. Yi H. Li Y. Cheng Y. Liu C. Lei A. Angew. Chem. Int. Ed. 2015; 54: 6604
  • 16 Fu Q. Yi D. Zhang Z. Liang W. Chen S. Yang L. Zhang Q. Ji J. Wei W. Org. Chem. Front. 2017; 4: 1385
  • 17 Chen X. Chen X. Li X. Qu C. Qu L. Bi W. Sun K. Zhao Y. Tetrahedron 2017; 73: 2439
  • 18 Gu J. Cai C. Org. Biomol. Chem. 2017; 15: 4226
  • 19 Bu M.-j. Lu G.-p. Cai C. Catal. Sci. Technol. 2016; 6: 413
  • 20 β-Keto Phosphonate Derivatives 3a–w; General Procedure A round-bottomed flask was charged with the appropriate alkyne 1 (0.25 mmol), H-phosphonate 2 (0.5 mmol), LiOH (0.05 mmol), DMF (2 mL), and H2O (0.25 mL), and the mixture was stirred at 60 °C for 3 h under O2 (balloon). When the reaction was complete, it was quenched with aq NaHCO3 (20 mL) and the mixture was extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with sat. brine (×2) then dried (MgSO4), filtered, and concentrated in vacuum. The crude product was purified by chromatography [silica gel, CH2Cl2–MeOH (30:1 to 50:1)]. 2-(Diphenylphosphoryl)-1-phenylethanone (3a) White solid; yield: 68 mg (85%); mp 139.5–140.4 °C. 1H NMR (400 MHz, CDCl3): δ = 4.14 (d, J = 15.4 Hz, 2 H), 7.38–7.53 (m, 9 H), 7.78–7.83 (m, 4 H), 7.96–7.98 (m, 2 H). 13C NMR (101 MHz, CDCl3): δ = 193.03 (d, J = 5.7 Hz), 137.13, 133.83, 132.52 (d, J = 2.8 Hz), 131.67 (d, J = 103.9 Hz), 131.32 (d, J = 9.7 Hz), 129.45, 128.85 (d, J = 12.3 Hz), 128.75, 43.52 (d, J = 58.2 Hz). 31P NMR (162 MHz, CDCl3): δ = 27.16. HRMS (ESI): m/z [M + Na]+ calcd for C20H17NaO2P : 343.0858; found: 343.0861.