J Pediatr Genet 2016; 05(04): 189-197
DOI: 10.1055/s-0036-1592422
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Genetic Advances in the Understanding of Microtia

Craig Gendron
1   Craniofacial and Pediatric Plastic Surgery, Saskatoon Health Region of Saskatchewan, Saskatoon, Canada
,
Ann Schwentker
2   Division of Plastic Surgery, University of Cincinnati, Cincinnati, Ohio, United States
,
John A. van Aalst
2   Division of Plastic Surgery, University of Cincinnati, Cincinnati, Ohio, United States
› Author Affiliations
Further Information

Publication History

30 August 2016

30 September 2016

Publication Date:
23 September 2016 (online)

Abstract

Microtia is a genetic condition affecting the external ears and presents clinically along a wide spectrum: minimally affected ears are small with minor shape abnormalities; extremely affected ears lack all identifiable structures, with the most extreme being absence of the entire external ear. Multiple genetic causes have been linked to microtia in both animal models and humans, which are improving our understanding of the condition and may lead to the identification of a unified cause for the condition. Microtia is also a prominent feature of several genetic syndromes, the study of which has provided further insight into the possible causes and genetic mechanisms of the condition. This article reviews our current understanding of microtia including epidemiological characteristics, classification systems, environmental and genetic causative factors leading to microtia. Despite our increased understanding of the genetics of microtia, we do not have a means of preventing the condition and still rely on complex staged, surgical correction.

 
  • References

  • 1 Carey JC, Park AH, Muntz HR. External ear. In: Stevenson RE, ed. Human Malformations and Related Anomalies. Oxford, New York: Oxford University Press; 2006: 329-338
  • 2 Castilla EE, Orioli IM. Prevalence rates of microtia in South America. Int J Epidemiol 1986; 15 (3) 364-368
  • 3 Suutarla S, Rautio J, Ritvanen A, Ala-Mello S, Jero J, Klockars T. Microtia in Finland: comparison of characteristics in different populations. Int J Pediatr Otorhinolaryngol 2007; 71 (8) 1211-1217
  • 4 Alasti F, Van Camp G. Genetics of microtia and associated syndromes. J Med Genet 2009; 46 (6) 361-369
  • 5 Hunter A, Frias JL, Gillessen-Kaesbach G, Hughes H, Jones KL, Wilson L. Elements of morphology: standard terminology for the ear. Am J Med Genet A 2009; 149A (1) 40-60
  • 6 Mastroiacovo P, Corchia C, Botto LD, Lanni R, Zampino G, Fusco D. Epidemiology and genetics of microtia-anotia: a registry based study on over one million births. J Med Genet 1995; 32 (6) 453-457
  • 7 Harris J, Källén B, Robert E. The epidemiology of anotia and microtia. J Med Genet 1996; 33 (10) 809-813
  • 8 Shaw GM, Carmichael SL, Kaidarova Z, Harris JA. Epidemiologic characteristics of anotia and microtia in California, 1989-1997. Birth Defects Res A Clin Mol Teratol 2004; 70 (7) 472-475
  • 9 Forrester MB, Merz RD. Descriptive epidemiology of anotia and microtia, Hawaii, 1986-2002. Congenit Anom (Kyoto) 2005; 45 (4) 119-124
  • 10 Canfield MA, Langlois PH, Nguyen LM, Scheuerle AE. Epidemiologic features and clinical subgroups of anotia/microtia in Texas. Birth Defects Res A Clin Mol Teratol 2009; 85 (11) 905-913
  • 11 Schoenwolf GC, Bleyl SB, Brauer PR, Francis-West PH. Development of the ears. In: Larsen's Human Embryology. 5th ed. New York: Churchill Livingstone; 2015: 473-487
  • 12 Noden DM, Trainor PA. Relations and interactions between cranial mesoderm and neural crest populations. J Anat 2005; 207 (5) 575-601
  • 13 Luquetti DV, Heike CL, Hing AV, Cunningham ML, Cox TC. Microtia: epidemiology and genetics. Am J Med Genet A 2012; 158A (1) 124-139
  • 14 Minoux M, Kratochwil CF, Ducret S , et al. Mouse Hoxa2 mutations provide a model for microtia and auricle duplication. Development 2013; 140 (21) 4386-4397
  • 15 Gonzalez-Andrade F, Lopez-Pulles R, Espín VH, Paz-y-Miño C. High altitude and microtia in Ecuadorian patients. J Neonatal Perinatal Med 2010; 3 (2) 109-116
  • 16 Jaffe BF. The incidence of ear diseases in the Navajo Indians. Laryngoscope 1969; 79 (12) 2126-2134
  • 17 Aase JM, Tegtmeier RE. Microtia in New Mexico: evidence for multifactorial causation. Birth Defects Orig Artic Ser 1977; 13 (3A): 113-116
  • 18 Nelson SM, Berry RI. Ear disease and hearing loss among Navajo children—a mass survey. Laryngoscope 1984; 94 (3) 316-323
  • 19 Tanzer RC. The constricted (cup and lop) ear. Plast Reconstr Surg 1975; 55 (4) 406-415
  • 20 Weerda H. Classification of congenital deformities of the auricle. Facial Plast Surg 1988; 5 (5) 385-388
  • 21 Sadler TW, Rasmussen SA. Examining the evidence for vascular pathogenesis of selected birth defects. Am J Med Genet A 2010; 152A (10) 2426-2436
  • 22 Poswillo D. The pathogenesis of the first and second branchial arch syndrome. Oral Surg Oral Med Oral Pathol 1973; 35 (3) 302-328
  • 23 Poswillo D. Hemorrhage in development of the face. Birth Defects Orig Artic Ser 1975; 11 (7) 61-81
  • 24 Otani H, Tanaka O, Naora H , et al. Microtia as an autosomal dominant mutation in a transgenic mouse line: a possible animal model of branchial arch anomalies. Anat Anz 1991; 172 (1) 1-9
  • 25 Naora H, Kimura M, Otani H , et al. Transgenic mouse model of hemifacial microsomia: cloning and characterization of insertional mutation region on chromosome 10. Genomics 1994; 23 (3) 515-519
  • 26 Johnston MC, Bronsky PT. Prenatal craniofacial development: new insights on normal and abnormal mechanisms. Crit Rev Oral Biol Med 1995; 6 (4) 368-422
  • 27 Okajima H, Takeichi Y, Umeda K, Baba S. Clinical analysis of 592 patients with microtia. Acta Otolaryngol Suppl 1996; 525: 18-24
  • 28 Lopez-Camelo JS, Orioli IM. Heterogeneous rates for birth defects in Latin America: hints on causality. Genet Epidemiol 1996; 13 (5) 469-481
  • 29 Ewart-Toland A, Yankowitz J, Winder A , et al. Oculoauriculovertebral abnormalities in children of diabetic mothers. Am J Med Genet 2000; 90 (4) 303-309
  • 30 Ang GS, Simpson SA, Reddy AR. Mycophenolate mofetil embryopathy may be dose and timing dependent. Am J Med Genet A 2008; 146A (15) 1963-1966
  • 31 Anderka MT, Lin AE, Abuelo DN, Mitchell AA, Rasmussen SA. Reviewing the evidence for mycophenolate mofetil as a new teratogen: case report and review of the literature. Am J Med Genet A 2009; 149A (6) 1241-1248
  • 32 Stern RS, Rosa F, Baum C. Isotretinoin and pregnancy. J Am Acad Dermatol 1984; 10 (5 Pt 1): 851-854
  • 33 Castilla EE, Lopez-Camelo JS, Campaña H. Altitude as a risk factor for congenital anomalies. Am J Med Genet 1999; 86 (1) 9-14
  • 34 Luquetti DV, Cox TC, Lopez-Camelo J, Dutra MdaG, Cunningham ML, Castilla EE. Preferential associated anomalies in 818 cases of microtia in South America. Am J Med Genet A 2013; 161A (5) 1051-1057
  • 35 Artunduaga MA, Quintanilla-Dieck MdeL, Greenway S , et al. A classic twin study of external ear malformations, including microtia. N Engl J Med 2009; 361 (12) 1216-1218
  • 36 Llano-Rivas I, González-del Angel A, del Castillo V, Reyes R, Carnevale A. Microtia: a clinical and genetic study at the National Institute of Pediatrics in Mexico City. Arch Med Res 1999; 30 (2) 120-124
  • 37 Ellwood LC, Winter ST, Dar H. Familial microtia with meatal atresia in two sibships. J Med Genet 1968; 5 (4) 289-291
  • 38 Konigsmark BW, Nager GT, Haskins HL. Recessive microtia, meatal atresia, and hearing loss. Report of a sibship. Arch Otolaryngol 1972; 96 (2) 105-109
  • 39 Balci S. Familial microtia with meatal atresia in father and son. Turk J Pediatr 1974; 16 (3) 140-143
  • 40 Guizar-Vázquez J, Arredondo-Vega F, Rostenberg I, Manzano C, Armendares S. Microtia and meatal atresia in mother and son. Clin Genet 1978; 14 (2) 80-82
  • 41 Zankl M, Zang KD. Inheritance of microtia and aural atresia in a family with five affected members. Clin Genet 1979; 16 (5) 331-334
  • 42 Schmid M, Schröder M, Langenbeck U. Familial microtia, meatal atresia, and conductive deafness in three siblings. Am J Med Genet 1985; 22 (2) 327-332
  • 43 Strisciuglio P, Ballabio A, Parenti G. Microtia with meatal atresia and conductive deafness: mild and severe manifestations within the same sibship. J Med Genet 1986; 23 (5) 459-460
  • 44 Orstavik KH, Medbø S, Mair IW. Right-sided microtia and conductive hearing loss with variable expressivity in three generations. Clin Genet 1990; 38 (2) 117-120
  • 45 Gupta A, Patton MA. Familial microtia with meatal atresia and conductive deafness in five generations. Am J Med Genet 1995; 59 (2) 238-241
  • 46 Balci S, Boduroğlu K, Kaya S. Familial microtia in four generations with variable expressivity and incomplete penetrance in association with type I syndactyly. Turk J Pediatr 2001; 43 (4) 362-365
  • 47 Klockars T, Suutarla S, Kentala E, Ala-Mello S, Rautio J. Inheritance of microtia in the Finnish population. Int J Pediatr Otorhinolaryngol 2007; 71 (11) 1783-1788
  • 48 Alasti F, Sadeghi A, Sanati MH , et al. A mutation in HOXA2 is responsible for autosomal-recessive microtia in an Iranian family. Am J Hum Genet 2008; 82 (4) 982-991
  • 49 Chafai Elalaoui S, Cherkaoui Jaouad I, Rifai L, Sefiani A. Autosomal dominant microtia. Eur J Med Genet 2010; 53 (2) 100-103
  • 50 Couly G, Grapin-Botton A, Coltey P, Ruhin B, Le Douarin NM. Determination of the identity of the derivatives of the cephalic neural crest: incompatibility between Hox gene expression and lower jaw development. Development 1998; 125 (17) 3445-3459
  • 51 Gendron-Maguire M, Mallo M, Zhang M, Gridley T. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 1993; 75 (7) 1317-1331
  • 52 Rijli FM, Mark M, Lakkaraju S, Dierich A, Dollé P, Chambon P. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 1993; 75 (7) 1333-1349
  • 53 O'Gorman S. Second branchial arch lineages of the middle ear of wild-type and Hoxa2 mutant mice. Dev Dyn 2005; 234 (1) 124-131
  • 54 Gavalas A, Studer M, Lumsden A, Rijli FM, Krumlauf R, Chambon P. Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 1998; 125 (6) 1123-1136
  • 55 Kawakami K, Sato S, Ozaki H, Ikeda K. Six family genes—structure and function as transcription factors and their roles in development. BioEssays 2000; 22 (7) 616-626
  • 56 Laclef C, Souil E, Demignon J, Maire P. Thymus, kidney and craniofacial abnormalities in Six 1 deficient mice. Mech Dev 2003; 120 (6) 669-679
  • 57 Brugmann SA, Pandur PD, Kenyon KL, Pignoni F, Moody SA. Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Development 2004; 131 (23) 5871-5881
  • 58 Christophorou NA, Bailey AP, Hanson S, Streit A. Activation of Six1 target genes is required for sensory placode formation. Dev Biol 2009; 336 (2) 327-336
  • 59 Grifone R, Demignon J, Houbron C , et al. Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo. Development 2005; 132 (9) 2235-2249
  • 60 Arnold JS, Braunstein EM, Ohyama T , et al. Tissue-specific roles of Tbx1 in the development of the outer, middle and inner ear, defective in 22q11DS patients. Hum Mol Genet 2006; 15 (10) 1629-1639
  • 61 Hu Y, Baud V, Delhase M , et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science 1999; 284 (5412) 316-320
  • 62 Ingraham CR, Kinoshita A, Kondo S , et al. Abnormal skin, limb and craniofacial morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6). Nat Genet 2006; 38 (11) 1335-1340
  • 63 ten Berge D, Brouwer A, Korving J, Martin JF, Meijlink F. Prx1 and Prx2 in skeletogenesis: roles in the craniofacial region, inner ear and limbs. Development 1998; 125 (19) 3831-3842
  • 64 Dixon MJ. Treacher Collins syndrome. Hum Mol Genet 1996; 5 (Spec No): 1391-1396
  • 65 Yamada G, Mansouri A, Torres M , et al. Targeted mutation of the murine goosecoid gene results in craniofacial defects and neonatal death. Development 1995; 121 (9) 2917-2922
  • 66 Wang W, Lufkin T. Hmx homeobox gene function in inner ear and nervous system cell-type specification and development. Exp Cell Res 2005; 306 (2) 373-379
  • 67 Yoshiura K, Leysens NJ, Reiter RS, Murray JC. Cloning, characterization, and mapping of the mouse homeobox gene Hmx1. Genomics 1998; 50 (1) 61-68
  • 68 Abu-Issa R, Smyth G, Smoak I, Yamamura K, Meyers EN. Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development 2002; 129 (19) 4613-4625
  • 69 Wright TJ, Mansour SL. Fgf3 and Fgf10 are required for mouse otic placode induction. Development 2003; 130 (15) 3379-3390
  • 70 Partanen J, Schwartz L, Rossant J. Opposite phenotypes of hypomorphic and Y766 phosphorylation site mutations reveal a function for Fgfr1 in anteroposterior patterning of mouse embryos. Genes Dev 1998; 12 (15) 2332-2344
  • 71 Zabihi S, Loeken MR. Understanding diabetic teratogenesis: where are we now and where are we going?. Birth Defects Res A Clin Mol Teratol 2010; 88 (10) 779-790
  • 72 Yamaguchi TP, Bradley A, McMahon AP, Jones S. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 1999; 126 (6) 1211-1223
  • 73 Beleza-Meireles A, Clayton-Smith J, Saraiva JM, Tassabehji M. Oculo-auriculo-vertebral spectrum: a review of the literature and genetic update. J Med Genet 2014; 51 (10) 635-645
  • 74 Engiz O, Balci S, Unsal M, Ozer S, Oguz KK, Aktas D. 31 cases with oculoauriculovertebral dysplasia (Goldenhar syndrome): clinical, neuroradiologic, audiologic and cytogenetic findings. Genet Couns 2007; 18 (3) 277-288
  • 75 Tribioli C, Lufkin T. Molecular cloning, chromosomal mapping and developmental expression of BAPX1, a novel human homeobox-containing gene homologous to Drosophila bagpipe. Gene 1997; 203 (2) 225-233
  • 76 Fischer S, Lüdecke HJ, Wieczorek D, Böhringer S, Gillessen-Kaesbach G, Horsthemke B. Histone acetylation dependent allelic expression imbalance of BAPX1 in patients with the oculo-auriculo-vertebral spectrum. Hum Mol Genet 2006; 15 (4) 581-587
  • 77 Heike CL, Hing AV, Aspinall CA , et al. Clinical care in craniofacial microsomia: a review of current management recommendations and opportunities to advance research. Am J Med Genet C Semin Med Genet 2013; 163C (4) 271-282
  • 78 Cohen Jr MM, Rollnick BR, Kaye CI. Oculoauriculovertebral spectrum: an updated critique. Cleft Palate J 1989; 26 (4) 276-286
  • 79 Gorlin RJ, Cohen Jr MM, Hennekam RCM. Syndromes of the Head and Neck. New York: Oxford University Press; 2001: 1344
  • 80 Kelberman D, Tyson J, Chandler DC , et al. Hemifacial microsomia: progress in understanding the genetic basis of a complex malformation syndrome. Hum Genet 2001; 109 (6) 638-645
  • 81 Marres HA. Hearing loss in the Treacher Collins syndrome. Adv Otorhinolaryngol 2002; 61: 209-215
  • 82 Su PH, Chen JY, Chen SJ, Yu JS. Treacher Collins syndrome with a de Novo 5-bp deletion in the TCOF1 gene. J Formos Med Assoc 2006; 105 (6) 518-521
  • 83 Hao J, Liu Z, Kong W, Wang J. [Treacher Collins syndrome: case report and literature review]. Lin Chuang Er Bi Yan Hou Ke Za Zhi 2006; 20 (13) 582-584
  • 84 Edwards SJ, Gladwin AJ, Dixon MJ. The mutational spectrum in Treacher Collins syndrome reveals a predominance of mutations that create a premature-termination codon. Am J Hum Genet 1997; 60 (3) 515-524
  • 85 Teber OA, Gillessen-Kaesbach G, Fischer S , et al. Genotyping in 46 patients with tentative diagnosis of Treacher Collins syndrome revealed unexpected phenotypic variation. Eur J Hum Genet 2004; 12 (11) 879-890
  • 86 Opitz JM, Mollica F, Sorge G, Milana G, Cimino G, Caltabiano M. Acrofacial dysostoses: review and report of a previously undescribed condition: the autosomal or X-linked dominant Catania form of acrofacial dysostosis. Am J Med Genet 1993; 47 (5) 660-678
  • 87 Buchanan EPMD, Xue ASMD, Hollier Jr LHJMD. Craniofacial syndromes. Plast Reconstr Surg 2014; 134 (1) 128e-153e
  • 88 Forrest CRMD, Hopper RA. Craniofacial syndromes and surgery. Plast Reconstr Surg 2013; 131 (1) 86e-109e
  • 89 Chemke J, Mogilner BM, Ben-Itzhak I, Zurkowski L, Ophir D. Autosomal recessive inheritance of Nager acrofacial dysostosis. J Med Genet 1988; 25 (4) 230-232
  • 90 McDonald MT, Gorski JL. Nager acrofacial dysostosis. J Med Genet 1993; 30 (9) 779-782
  • 91 Norris RA, Scott KK, Moore CS , et al. Human PRRX1 and PRRX2 genes: cloning, expression, genomic localization, and exclusion as disease genes for Nager syndrome. Mamm Genome 2000; 11 (11) 1000-1005
  • 92 McDermid HE, Morrow BE. Genomic disorders on 22q11. Am J Hum Genet 2002; 70 (5) 1077-1088
  • 93 Lindsay EA, Vitelli F, Su H , et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001; 410 (6824) 97-101
  • 94 Emanuel BS, McDonald-McGinn D, Saitta SC, Zackai EH. The 22q11.2 deletion syndrome. Adv Pediatr 2001; 48: 39-73
  • 95 Kosaki R, Fujimaru R, Samejima H , et al. Wide phenotypic variations within a family with SALL1 mutations: Isolated external ear abnormalities to Goldenhar syndrome. Am J Med Genet A 2007; 143A (10) 1087-1090
  • 96 Dixon J, Jones NC, Sandell LL , et al. Tcof1/treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc Natl Acad Sci U S A 2006; 103 (36) 13403-13408
  • 97 Ruf RG, Xu PX, Silvius D , et al. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci U S A 2004; 101 (21) 8090-8095
  • 98 Matsunaga T, Okada M, Usami S, Okuyama T. Phenotypic consequences in a Japanese family having branchio-oto-renal syndrome with a novel frameshift mutation in the gene EYA1. Acta Otolaryngol 2007; 127 (1) 98-104
  • 99 Hone SW, Smith RJ. Genetics of hearing impairment. Semin Neonatol 2001; 6 (6) 531-541
  • 100 Abdelhak S, Kalatzis V, Heilig R , et al. Clustering of mutations responsible for branchio-oto-renal (BOR) syndrome in the eyes absent homologous region (eyaHR) of EYA1. Hum Mol Genet 1997; 6 (13) 2247-2255
  • 101 Kumar S, Deffenbacher K, Cremers CW, Van Camp G, Kimberling WJ. Branchio-oto-renal syndrome: identification of novel mutations, molecular characterization, mutation distribution, and prospects for genetic testing. Genet Test 1997; –1998; 1 (4) 243-251
  • 102 Rodríguez Soriano J. Branchio-oto-renal syndrome. J Nephrol 2003; 16 (4) 603-605
  • 103 Ruf RG, Berkman J, Wolf MT , et al. A gene locus for branchio-otic syndrome maps to chromosome 14q21.3-q24.3. J Med Genet 2003; 40 (7) 515-519
  • 104 Hoskins BE, Cramer CH, Silvius D , et al. Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome. Am J Hum Genet 2007; 80 (4) 800-804
  • 105 Giannatou E, Leze H, Katana A , et al. Unilateral microtia in an infant with trisomy 18 mosaicism. Genet Couns 2009; 20 (2) 181-187
  • 106 Griffith CB, Vance GH, Weaver DD. Phenotypic variability in trisomy 13 mosaicism: two new patients and literature review. Am J Med Genet A 2009; 149A (6) 1346-1358
  • 107 Davies AF, Imaizumi K, Mirza G , et al. Further evidence for the involvement of human chromosome 6p24 in the aetiology of orofacial clefting. J Med Genet 1998; 35 (10) 857-861
  • 108 Veltman JA, Jonkers Y, Nuijten I , et al. Definition of a critical region on chromosome 18 for congenital aural atresia by arrayCGH. Am J Hum Genet 2003; 72 (6) 1578-1584
  • 109 Zhang Q, Zhang J, Yin W. Pedigree and genetic study of a bilateral congenital microtia family. Plast Reconstr Surg 2010; 125 (3) 979-987
  • 110 Lin L, Pan B, Jiang HY , et al. Study of methylation of promoter of EYA1 gene in microtia[in Chinese]. Zhonghua Zheng Xing Wai Ke Za Zhi 2009; 25 (6) 436-439
  • 111 Schorderet DF, Nichini O, Boisset G , et al. Mutation in the human homeobox gene NKX5-3 causes an oculo-auricular syndrome. Am J Hum Genet 2008; 82 (5) 1178-1184
  • 112 Vaclavik V, Schorderet DF, Borruat FX, Munier FL. Retinal dystrophy in the oculo-auricular syndrome due to HMX1 mutation. Ophthalmic Genet 2011; 32 (2) 114-117
  • 113 Turner EE, Cox TC. Genetic evidence for conserved non-coding element function across species-the ears have it. Front Phys 2014; 5: 7
  • 114 Passos-Bueno MR, Ornelas CC, Fanganiello RD. Syndromes of the first and second pharyngeal arches: a review. Am J Med Genet A 2009; 149A (8) 1853-1859
  • 115 Trainor PA. Craniofacial birth defects: the role of neural crest cells in the etiology and pathogenesis of Treacher Collins syndrome and the potential for prevention. Am J Med Genet A 2010; 152A (12) 2984-2994
  • 116 Hansen JM, Gong SG, Philbert M, Harris C. Misregulation of gene expression in the redox-sensitive NF-kappab-dependent limb outgrowth pathway by thalidomide. Dev Dyn 2002; 225 (2) 186-194
  • 117 Knobloch J, Shaughnessy Jr JD, Rüther U. Thalidomide induces limb deformities by perturbing the Bmp/Dkk1/Wnt signaling pathway. FASEB J 2007; 21 (7) 1410-1421
  • 118 Ito T, Ando H, Suzuki T , et al. Identification of a primary target of thalidomide teratogenicity. Science 2010; 327 (5971) 1345-1350
  • 119 Parman T, Wiley MJ, Wells PG. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat Med 1999; 5 (5) 582-585