Semin intervent Radiol 2017; 34(01): 73-80
DOI: 10.1055/s-0036-1597767
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Future of Nanoparticle-Directed Venous Therapy

Benjamin Jacobs
1   Section of General Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
,
Chandu Vemuri
2   Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
› Author Affiliations
Further Information

Publication History

Publication Date:
02 March 2017 (online)

Abstract

Nanoparticles, structures of less than 200 nm capable of delivering pharmacotherapeutics to sites of disease, have shown great promise for the treatment of many disease states. While no nanoparticle therapies for deep vein thrombosis are currently approved by the Food and Drug Administration, many of the unique features of these therapies have the potential to treat both deep vein thrombosis and its most significant sequela, postthrombotic syndrome, while limiting the hemorrhagic complications of current antithrombotic therapies. Nanoparticles are complex structures with several important variables that must be considered to engineer effective therapies. This article will review the structure and engineering of nanoparticles, as well as promising molecular targets for future investigation.

 
  • References

  • 1 Heit JA. Epidemiology of venous thromboembolism. Nat Rev Cardiol 2015; 12 (8) 464-474
  • 2 Kahn SR, Shbaklo H, Lamping DL , et al. Determinants of health-related quality of life during the 2 years following deep vein thrombosis. J Thromb Haemost 2008; 6 (7) 1105-1112
  • 3 Tick LW, Kramer MH, Rosendaal FR, Faber WR, Doggen CJ. Risk factors for post-thrombotic syndrome in patients with a first deep venous thrombosis. J Thromb Haemost 2008; 6 (12) 2075-2081
  • 4 Galanaud JP, Holcroft CA, Rodger MA , et al. Predictors of post-thrombotic syndrome in a population with a first deep vein thrombosis and no primary venous insufficiency. J Thromb Haemost 2013; 11 (3) 474-480
  • 5 Henke PK, Comerota AJ. An update on etiology, prevention, and therapy of postthrombotic syndrome. J Vasc Surg 2011; 53 (2) 500-509
  • 6 Bates SM, Jaeschke R, Stevens SM , et al. Diagnosis of DVT: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141 (2, Suppl): e351S-e418S
  • 7 Schein JR, White CM, Nelson WW, Kluger J, Mearns ES, Coleman CI. Vitamin K antagonist use: evidence of the difficulty of achieving and maintaining target INR range and subsequent consequences. Thromb J 2016; 14: 14
  • 8 Caldeira D, Rodrigues FB, Barra M , et al. Non-vitamin K antagonist oral anticoagulants and major bleeding-related fatality in patients with atrial fibrillation and venous thromboembolism: a systematic review and meta-analysis. Heart 2015; 101 (15) 1204-1211
  • 9 Knepper J, Horne D, Obi A, Wakefield TW. A systematic update on the state of novel anticoagulants and a primer on reversal and bridging. J Vasc Surg Venous Lymphat Disord 2013; 1 (4) 418-426
  • 10 Kearon C, Akl EA, Ornelas J , et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest 2016; 149 (2) 315-352
  • 11 Andras A, Sala Tenna A, Crawford F. Vitamin K antagonists or low-molecular-weight heparin for the long term treatment of symptomatic venous thromboembolism. Cochrane Database Syst Rev 2012; 10: CD002001
  • 12 Hull RD, Liang J, Merali T. Effect of long-term LMWH on post-thrombotic syndrome in patients with iliac/noniliac venous thrombosis: a subanalysis from the home-LITE study. Clin Appl Thromb Hemost 2013; 19 (5) 476-481
  • 13 Enden T, Haig Y, Kløw NE , et al; CaVenT Study Group. Long-term outcome after additional catheter-directed thrombolysis versus standard treatment for acute iliofemoral deep vein thrombosis (the CaVenT study): a randomised controlled trial. Lancet 2012; 379 (9810): 31-38
  • 14 Watson L, Broderick C, Armon MP. Thrombolysis for acute deep vein thrombosis. Cochrane Database Syst Rev 2014; (1) CD002783
  • 15 Chithrani DB. Intracellular uptake, transport, and processing of gold nanostructures. Mol Membr Biol 2010; 27 (7) 299-311
  • 16 Hauck TS, Ghazani AA, Chan WC. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 2008; 4 (1) 153-159
  • 17 Williams KM, Gokulan K, Cerniglia CE, Khare S. Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. J Nanobiotechnology 2016; 14 (1) 62
  • 18 Anglin EJ, Cheng L, Freeman WR, Sailor MJ. Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 2008; 60 (11) 1266-1277
  • 19 Herd H, Daum N, Jones AT, Huwer H, Ghandehari H, Lehr CM. Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano 2013; 7 (3) 1961-1973
  • 20 Zhu J, Liao L, Bian X, Kong J, Yang P, Liu B. pH-controlled delivery of doxorubicin to cancer cells, based on small mesoporous carbon nanospheres. Small 2012; 8 (17) 2715-2720
  • 21 Feliu N, Docter D, Heine M , et al. In vivo degeneration and the fate of inorganic nanoparticles. Chem Soc Rev 2016; 45 (9) 2440-2457
  • 22 Nativo P, Prior IA, Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2008; 2 (8) 1639-1644
  • 23 Bai S, Thomas C, Ahsan F. Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin. J Pharm Sci 2007; 96 (8) 2090-2106
  • 24 Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 2001; 6 (8) 427-436
  • 25 Ganguly R, Wen AM, Myer AB , et al. Anti-atherogenic effect of trivalent chromium-loaded CPMV nanoparticles in human aortic smooth muscle cells under hyperglycemic conditions in vitro. Nanoscale 2016; 8 (12) 6542-6554
  • 26 Walther W, Stein U. Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs 2000; 60 (2) 249-271
  • 27 Garnacho C, Albelda SM, Muzykantov VR, Muro S. Differential intra-endothelial delivery of polymer nanocarriers targeted to distinct PECAM-1 epitopes. J Control Release 2008; 130 (3) 226-233
  • 28 Howard M, Zern BJ, Anselmo AC, Shuvaev VV, Mitragotri S, Muzykantov V. Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS Nano 2014; 8 (5) 4100-4132
  • 29 Muro S, Garnacho C, Champion JA , et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther 2008; 16 (8) 1450-1458
  • 30 Doshi N, Orje JN, Molins B, Smith JW, Mitragotri S, Ruggeri ZM. Platelet mimetic particles for targeting thrombi in flowing blood. Adv Mater 2012; 24 (28) 3864-3869
  • 31 Qie Y, Yuan H, von Roemeling CA , et al. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci Rep 2016; 6: 26269
  • 32 Laverman P, Carstens MG, Boerman OC , et al. Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J Pharmacol Exp Ther 2001; 298 (2) 607-612
  • 33 Dézsi L, Fülöp T, Mészáros T , et al. Features of complement activation-related pseudoallergy to liposomes with different surface charge and PEGylation: comparison of the porcine and rat responses. J Control Release 2014; 195: 2-10
  • 34 Kessner S, Krause A, Rothe U, Bendas G. Investigation of the cellular uptake of E-Selectin-targeted immunoliposomes by activated human endothelial cells. Biochim Biophys Acta 2001; 1514 (2) 177-190
  • 35 Papademetriou I, Tsinas Z, Hsu J, Muro S. Combination-targeting to multiple endothelial cell adhesion molecules modulates binding, endocytosis, and in vivo biodistribution of drug nanocarriers and their therapeutic cargoes. J Control Release 2014; 188: 87-98
  • 36 Muro S, Cui X, Gajewski C, Murciano JC, Muzykantov VR, Koval M. Slow intracellular trafficking of catalase nanoparticles targeted to ICAM-1 protects endothelial cells from oxidative stress. Am J Physiol Cell Physiol 2003; 285 (5) C1339-C1347
  • 37 Muro S. Challenges in design and characterization of ligand-targeted drug delivery systems. J Control Release 2012; 164 (2) 125-137
  • 38 Huang RB, Mocherla S, Heslinga MJ, Charoenphol P, Eniola-Adefeso O. Dynamic and cellular interactions of nanoparticles in vascular-targeted drug delivery. Mol Membr Biol 2010; 27 (7) 312-327
  • 39 Simone E, Ding BS, Muzykantov V. Targeted delivery of therapeutics to endothelium. Cell Tissue Res 2009; 335 (1) 283-300
  • 40 Pan H, Myerson JW, Hu L , et al. Programmable nanoparticle functionalization for in vivo targeting. FASEB J 2013; 27 (1) 255-264
  • 41 Muro S, Dziubla T, Qiu W , et al. Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1. J Pharmacol Exp Ther 2006; 317 (3) 1161-1169
  • 42 Danilov SM, Gavrilyuk VD, Franke FE , et al. Lung uptake of antibodies to endothelial antigens: key determinants of vascular immunotargeting. Am J Physiol Lung Cell Mol Physiol 2001; 280 (6) L1335-L1347
  • 43 Downing LJ, Wakefield TW, Strieter RM , et al. Anti-P-selectin antibody decreases inflammation and thrombus formation in venous thrombosis. J Vasc Surg 1997; 25 (5) 816-827 , discussion 828
  • 44 Christofidou-Solomidou M, Kennel S, Scherpereel A , et al. Vascular immunotargeting of glucose oxidase to the endothelial antigens induces distinct forms of oxidant acute lung injury: targeting to thrombomodulin, but not to PECAM-1, causes pulmonary thrombosis and neutrophil transmigration. Am J Pathol 2002; 160 (3) 1155-1169
  • 45 Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R, Ruoslahti E. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest 1998; 102 (2) 430-437
  • 46 Christofidou-Solomidou M, Scherpereel A, Wiewrodt R , et al. PECAM-directed delivery of catalase to endothelium protects against pulmonary vascular oxidative stress. Am J Physiol Lung Cell Mol Physiol 2003; 285 (2) L283-L292
  • 47 Scherpereel A, Rome JJ, Wiewrodt R , et al. Platelet-endothelial cell adhesion molecule-1-directed immunotargeting to cardiopulmonary vasculature. J Pharmacol Exp Ther 2002; 300 (3) 777-786
  • 48 Shuvaev VV, Ilies MA, Simone E , et al. Endothelial targeting of antibody-decorated polymeric filomicelles. ACS Nano 2011; 5 (9) 6991-6999
  • 49 Muro S, Mateescu M, Gajewski C, Robinson M, Muzykantov VR, Koval M. Control of intracellular trafficking of ICAM-1-targeted nanocarriers by endothelial Na+/H+ exchanger proteins. Am J Physiol Lung Cell Mol Physiol 2006; 290 (5) L809-L817
  • 50 Calderon AJ, Muzykantov V, Muro S, Eckmann DM. Flow dynamics, binding and detachment of spherical carriers targeted to ICAM-1 on endothelial cells. Biorheology 2009; 46 (4) 323-341
  • 51 Murciano JC, Muro S, Koniaris L , et al. ICAM-directed vascular immunotargeting of antithrombotic agents to the endothelial luminal surface. Blood 2003; 101 (10) 3977-3984
  • 52 Muro S, Schuchman EH, Muzykantov VR. Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis. Mol Ther 2006; 13 (1) 135-141
  • 53 Scherpereel A, Wiewrodt R, Christofidou-Solomidou M , et al. Cell-selective intracellular delivery of a foreign enzyme to endothelium in vivo using vascular immunotargeting. FASEB J 2001; 15 (2) 416-426
  • 54 Calderon AJ, Bhowmick T, Leferovich J , et al. Optimizing endothelial targeting by modulating the antibody density and particle concentration of anti-ICAM coated carriers. J Control Release 2011; 150 (1) 37-44
  • 55 Vandy FC, Stabler C, Eliassen AM , et al. Soluble P-selectin for the diagnosis of lower extremity deep venous thrombosis. J Vasc Surg Venous Lymphat Disord 2013; 1 (2) 117-1125
  • 56 Diaz JA, Wrobleski SK, Alvarado CM , et al. P-selectin inhibition therapeutically promotes thrombus resolution and prevents vein wall fibrosis better than enoxaparin and an inhibitor to von Willebrand factor. Arterioscler Thromb Vasc Biol 2015; 35 (4) 829-837
  • 57 Absar S, Nahar K, Kwon YM, Ahsan F. Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy. Pharm Res 2013; 30 (6) 1663-1676
  • 58 Plow EF, Pierschbacher MD, Ruoslahti E, Marguerie G, Ginsberg MH. Arginyl-glycyl-aspartic acid sequences and fibrinogen binding to platelets. Blood 1987; 70 (1) 110-115
  • 59 Chung TW, Wang SS, Tsai WJ. Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles. Biomaterials 2008; 29 (2) 228-237
  • 60 McCarthy JR, Patel P, Botnaru I, Haghayeghi P, Weissleder R, Jaffer FA. Multimodal nanoagents for the detection of intravascular thrombi. Bioconjug Chem 2009; 20 (6) 1251-1255
  • 61 Gartner TK, Bennett JS. The tetrapeptide analogue of the cell attachment site of fibronectin inhibits platelet aggregation and fibrinogen binding to activated platelets. J Biol Chem 1985; 260 (22) 11891-11894
  • 62 Chung EJ, Cheng Y, Morshed R , et al. Fibrin-binding, peptide amphiphile micelles for targeting glioblastoma. Biomaterials 2014; 35 (4) 1249-1256
  • 63 Runge MS, Quertermous T, Zavodny PJ , et al. A recombinant chimeric plasminogen activator with high affinity for fibrin has increased thrombolytic potency in vitro and in vivo. Proc Natl Acad Sci U S A 1991; 88 (22) 10337-10341
  • 64 McCarthy JR, Sazonova IY, Erdem SS , et al. Multifunctional nanoagent for thrombus-targeted fibrinolytic therapy. Nanomedicine (Lond) 2012; 7 (7) 1017-1028
  • 65 Myerson J, He L, Lanza G, Tollefsen D, Wickline S. Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for the treatment and magnetic resonance imaging of acute thrombosis. J Thromb Haemost 2011; 9 (7) 1292-1300
  • 66 Chen J, Vemuri C, Palekar RU , et al. Antithrombin nanoparticles improve kidney reperfusion and protect kidney function after ischemia-reperfusion injury. Am J Physiol Renal Physiol 2015; 308 (7) F765-F773
  • 67 Palekar RU, Vemuri C, Marsh JN, Arif B, Wickline SA. Antithrombin nanoparticles inhibit stent thrombosis in ex vivo static and flow models. J Vasc Surg 2016; 64 (5) 1459-1467
  • 68 Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000; 407 6801 258-264
  • 69 Jin HJ, Zhang H, Sun ML, Zhang BG, Zhang JW. Urokinase-coated chitosan nanoparticles for thrombolytic therapy: preparation and pharmacodynamics in vivo. J Thromb Thrombolysis 2013; 36 (4) 458-468