Semin Thromb Hemost 2017; 43(06): 581-590
DOI: 10.1055/s-0037-1604053
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Emerging Therapeutic Strategies in the Treatment of Hemophilia A

Vincent Muczynski
1   Institut National de la Santé et de la Recherche Médicale, University Paris-Sud, University Paris-Saclay, Le Kremlin-Bicêtre, France
,
Olivier D. Christophe
1   Institut National de la Santé et de la Recherche Médicale, University Paris-Sud, University Paris-Saclay, Le Kremlin-Bicêtre, France
,
Cécile V. Denis
1   Institut National de la Santé et de la Recherche Médicale, University Paris-Sud, University Paris-Saclay, Le Kremlin-Bicêtre, France
,
Peter J. Lenting
1   Institut National de la Santé et de la Recherche Médicale, University Paris-Sud, University Paris-Saclay, Le Kremlin-Bicêtre, France
› Author Affiliations
Further Information

Publication History

Publication Date:
27 July 2017 (online)

Abstract

The development of therapeutic strategies for the treatment of hemophilia A has been a long-lasting issue since the initial identification of the disease in the early 19th century and has involved several major steps to reach contemporary treatment. The current replacement therapy involving intravenous infusion of plasmatic or recombinant factor VIII (FVIII) has been efficient to control bleeding episodes of patients with hemophilia A. Nonetheless, replacement therapy requires frequent infusions to maintain values of FVIII above the threshold of efficacy and represents a serious burden that significantly impacts the patient's quality of life. The recent half-life extension technologies have permitted the development of a first generation of long-acting FVIII variants with improved circulating survival. These molecules, which are now in clinical phase III studies or have already received food and drug administration (FDA) approval for therapeutic use will allow a reduction in the frequency of infusion and lighten the treatment of hemophilia A. However, the half-life extension of FVIII was not as efficient as initially expected, particularly with regard to the results obtained with other therapeutic molecules. To overcome these limitations inherent to the nature of FVIII biology, several bypassing therapies independent of the FVIII molecule are currently in development. These emerging approaches exploit the modulation of the coagulation/anticoagulation balance taking place in the hemostatic process to compensate for the FVIII deficiency. In this review, we recount the history of hemophilia A treatment up to the recent emerging therapies, with particular focus on infusion-based strategies.

 
  • References

  • 1 Hopff F. Über die haemophilia oder die erbliche Anlage zu tödlichen Blutungen. [Thesis] Univ. Zurich; 1828
  • 2 Lane S. Haemorrhagic diathesis: successful transfusion of blood. Lancet 1840; 35 (896) 185-188
  • 3 Weil PE. A method of inducing haemostasis in haemophilia. Lancet 1907; 169 (4363): 1046
  • 4 Weil PE. Serum treatment of haemophilia. Lancet 1920; 196 (5058): 300-301
  • 5 Otto JC. Review of American Publications in Medicine, Surgery and the Medical Repository. New York, NY: Auxillary Branches of Sciences; 1803
  • 6 Hay J. Account of a remarkable hæmorrhagic disposition, existing in many individuals of the same family. N Engl J Med 1813; 2 (03) 221-225
  • 7 Baker GA, Gibson PC. A case of haemophilia treated with Russell viper venom. Lancet 1936; 227 (5869): 428
  • 8 Macfarlane RG, Barnett B. The hemostatic possibilities of snake venom. Lancet 1934; 224 (5801): 985-987
  • 9 Timperley WA, Naish AE, Clark GA. A new method of treatment in haemophilia. Lancet 1936; 228 (5907): 1142-1149
  • 10 Pickering JW. The recognition, treatment, and aetiology of haemophilia. Lancet 1929; 213 (5520): 1239-1242
  • 11 Boudreaux HB, Frampton VL. A peanut factor for haemostasis in haemophilia. Nature 1960; 185 (4711): 469-470
  • 12 Verstraete M, Ruys CA. Double-blind experiments on the effect of a peanut extract on the bleeding incidence in 92 haemophiliacs. BMJ 1967; 4 (5577): 453-456
  • 13 Pool JG, Gershgold EJ, Pappenhagen AR. High-potency antihaemophilic factor concentrate prepared from cryoglobulin precipitate. Nature 1964; 203: 312
  • 14 Mannucci PM. Back to the future: a recent history of haemophilia treatment. Haemophilia 2008; 14 (03) (Suppl. 03) 10-18
  • 15 Gitschier J, Wood WI, Goralka TM. , et al. Characterization of the human factor VIII gene. Nature 1984; 312 (5992): 326-330
  • 16 Toole JJ, Knopf JL, Wozney JM. , et al. Molecular cloning of a cDNA encoding human antihaemophilic factor. Nature 1984; 312 (5992): 342-347
  • 17 Vehar GA, Keyt B, Eaton D. , et al. Structure of human factor VIII. Nature 1984; 312 (5992): 337-342
  • 18 Wood WI, Capon DJ, Simonsen CC. , et al. Expression of active human factor VIII from recombinant DNA clones. Nature 1984; 312 (5992): 330-337
  • 19 Gregoriadis G, Jain S, Papaioannou I, Laing P. Improving the therapeutic efficacy of peptides and proteins: a role for polysialic acids. Int J Pharm 2005; 300 (1–2): 125-130
  • 20 Pasut G, Veronese FM. State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release 2012; 161 (02) 461-472
  • 21 Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 2007; 7 (09) 715-725
  • 22 Sleep D, Cameron J, Evans LR. Albumin as a versatile platform for drug half-life extension. Biochim Biophys Acta 2013; 1830 (12) 5526-5534
  • 23 Fares FA, Suganuma N, Nishimori K, LaPolt PS, Hsueh AJ, Boime I. Design of a long-acting follitropin agonist by fusing the C-terminal sequence of the chorionic gonadotropin beta subunit to the follitropin beta subunit. Proc Natl Acad Sci U S A 1992; 89 (10) 4304-4308
  • 24 Röstin J, Smeds AL, Akerblom E. B-Domain deleted recombinant coagulation factor VIII modified with monomethoxy polyethylene glycol. Bioconjug Chem 2000; 11 (03) 387-396
  • 25 Mei B, Pan C, Jiang H. , et al. Rational design of a fully active, long-acting PEGylated factor VIII for hemophilia A treatment. Blood 2010; 116 (02) 270-279
  • 26 Thim L, Vandahl B, Karlsson J. , et al. Purification and characterization of a new recombinant factor VIII (N8). Haemophilia 2010; 16 (02) 349-359
  • 27 Coyle TE, Reding MT, Lin JC, Michaels LA, Shah A, Powell J. Phase I study of BAY 94-9027, a PEGylated B-domain-deleted recombinant factor VIII with an extended half-life, in subjects with hemophilia A. J Thromb Haemost 2014; 12 (04) 488-496
  • 28 Tiede A, Brand B, Fischer R. , et al. Enhancing the pharmacokinetic properties of recombinant factor VIII: first-in-human trial of glycoPEGylated recombinant factor VIII in patients with hemophilia A. J Thromb Haemost 2013; 11 (04) 670-678
  • 29 Turecek PL, Bossard MJ, Graninger M. , et al. BAX 855, a PEGylated rFVIII product with prolonged half-life. Development, functional and structural characterisation. Hamostaseologie 2012; 32 (Suppl. 01) S29-S38
  • 30 Konkle BA, Stasyshyn O, Chowdary P. , et al. PEGylated, full-length, recombinant factor VIII for prophylactic and on-demand treatment of severe hemophilia A. Blood 2015; 126 (09) 1078-1085
  • 31 Dumont JA, Liu T, Low SC. , et al. Prolonged activity of a recombinant factor VIII-Fc fusion protein in hemophilia A mice and dogs. Blood 2012; 119 (13) 3024-3030
  • 32 Mahlangu J, Powell JS, Ragni MV. , et al; A-LONG Investigators. Phase 3 study of recombinant factor VIII Fc fusion protein in severe hemophilia A. Blood 2014; 123 (03) 317-325
  • 33 Peyvandi F, Garagiola I. Treatment of hemophilia in the near future. Semin Thromb Hemost 2015; 41 (08) 838-848
  • 34 Mannucci PM. Half-life extension technologies for haemostatic agents. Thromb Haemost 2015; 113 (01) 165-176
  • 35 Pipe SW, Montgomery RR, Pratt KP, Lenting PJ, Lillicrap D. Life in the shadow of a dominant partner: the FVIII-VWF association and its clinical implications for hemophilia A. Blood 2016; 128 (16) 2007-2016
  • 36 Liu TY, Chhabra ES, Kulman J. , et al. Prolonged efficacy in hemophilia A mouse bleeding models of a recombinant FVIII-XTEN/D'D3 heterodimer with four-fold extended half-life in circulation. Haemophilia 2014; 20 (Suppl. 03) 76
  • 37 Ellis V, Scully M, MacGregor I, Kakkar V. Inhibition of human factor Xa by various plasma protease inhibitors. Biochim Biophys Acta 1982; 701 (01) 24-31
  • 38 Fuchs HE, Pizzo SV. Regulation of factor Xa in vitro in human and mouse plasma and in vivo in mouse. Role of the endothelium and plasma proteinase inhibitors. J Clin Invest 1983; 72 (06) 2041-2049
  • 39 Narita M, Rudolph AE, Miletich JP, Schwartz AL. The low-density lipoprotein receptor-related protein (LRP) mediates clearance of coagulation factor Xa in vivo. Blood 1998; 91 (02) 555-560
  • 40 Khan AR, James MN. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci 1998; 7 (04) 815-836
  • 41 Bunce MW, Toso R, Camire RM. Zymogen-like factor Xa variants restore thrombin generation and effectively bypass the intrinsic pathway in vitro. Blood 2011; 117 (01) 290-298
  • 42 Toso R, Zhu H, Camire RM. The conformational switch from the factor X zymogen to protease state mediates exosite expression and prothrombinase assembly. J Biol Chem 2008; 283 (27) 18627-18635
  • 43 Ivanciu L, Toso R, Margaritis P. , et al. A zymogen-like factor Xa variant corrects the coagulation defect in hemophilia. Nat Biotechnol 2011; 29 (11) 1028-1033
  • 44 Ivanciu L, Camire RM. Hemostatic agents of broad applicability produced by selective tuning of factor Xa zymogenicity. Blood 2015; 126 (01) 94-102
  • 45 Hertzberg M. Biochemistry of factor X. Blood Rev 1994; 8 (01) 56-62
  • 46 Mann KG. Biochemistry and physiology of blood coagulation. Thromb Haemost 1999; 82 (02) 165-174
  • 47 Louvain-Quintard VB, Bianchini EP, Calmel-Tareau C, Tagzirt M, Le Bonniec BF. Thrombin-activable factor X re-establishes an intrinsic amplification in tenase-deficient plasmas. J Biol Chem 2005; 280 (50) 41352-41359
  • 48 Guéguen P, Cherel G, Badirou I, Denis CV, Christophe OD. Two residues in the activation peptide domain contribute to the half-life of factor X in vivo. J Thromb Haemost 2010; 8 (07) 1651-1653
  • 49 Muczynski V, Aymé G, Regnault V. , et al. Complex formation with pentraxin-2 regulates factor X plasma levels and macrophage interactions. Blood 2017; 129 (17) 2443-2454
  • 50 Sampei Z, Igawa T, Soeda T. , et al. Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PLoS One 2013; 8 (02) e57479
  • 51 Kitazawa T, Igawa T, Sampei Z. , et al. A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model. Nat Med 2012; 18 (10) 1570-1574
  • 52 Muto A, Yoshihashi K, Takeda M. , et al. Anti-factor IXa/X bispecific antibody (ACE910): hemostatic potency against ongoing bleeds in a hemophilia A model and the possibility of routine supplementation. J Thromb Haemost 2014; 12 (02) 206-213
  • 53 Muto A, Yoshihashi K, Takeda M. , et al. Anti-factor IXa/X bispecific antibody ACE910 prevents joint bleeds in a long-term primate model of acquired hemophilia A. Blood 2014; 124 (20) 3165-3171
  • 54 Shima M, Hanabusa H, Taki M. , et al. Factor VIII-mimetic function of humanized bispecific antibody in Hemophilia A. N Engl J Med 2016; 374 (21) 2044-2053
  • 55 Uchida N, Sambe T, Yoneyama K. , et al. A first-in-human phase 1 study of ACE910, a novel factor VIII-mimetic bispecific antibody, in healthy subjects. Blood 2016; 127 (13) 1633-1641
  • 56 Cvirn G, Gallistl S, Leschnik B, Muntean W. Low tissue factor pathway inhibitor (TFPI) together with low antithrombin allows sufficient thrombin generation in neonates. J Thromb Haemost 2003; 1 (02) 263-268
  • 57 Fritsch P, Cvirn G, Cimenti C. , et al. Thrombin generation in factor VIII-depleted neonatal plasma: nearly normal because of physiologically low antithrombin and tissue factor pathway inhibitor. J Thromb Haemost 2006; 4 (05) 1071-1077
  • 58 Bolliger D, Szlam F, Suzuki N, Matsushita T, Tanaka KA. Heterozygous antithrombin deficiency improves in vivo haemostasis in factor VIII-deficient mice. Thromb Haemost 2010; 103 (06) 1233-1238
  • 59 Westrick RJ, Bodary PF, Xu Z, Shen YC, Broze GJ, Eitzman DT. Deficiency of tissue factor pathway inhibitor promotes atherosclerosis and thrombosis in mice. Circulation 2001; 103 (25) 3044-3046
  • 60 Kleesiek K, Schmidt M, Götting C. , et al. The 536C-->T transition in the human tissue factor pathway inhibitor (TFPI) gene is statistically associated with a higher risk for venous thrombosis. Thromb Haemost 1999; 82 (01) 1-5
  • 61 Escuriola Ettingshausen C, Halimeh S, Kurnik K. , et al. Symptomatic onset of severe hemophilia A in childhood is dependent on the presence of prothrombotic risk factors. Thromb Haemost 2001; 85 (02) 218-220
  • 62 Nichols WC, Amano K, Cacheris PM. , et al. Moderation of hemophilia A phenotype by the factor V R506Q mutation. Blood 1996; 88 (04) 1183-1187
  • 63 Vianello F, Belvini D, Dal Bello F. , et al. Mild bleeding diathesis in a boy with combined severe haemophilia B (C(10400)-->T) and heterozygous factor V Leiden. Haemophilia 2001; 7 (05) 511-514
  • 64 Polderdijk SG, Adams TE, Ivanciu L, Camire RM, Baglin TP, Huntington JA. Design and characterization of an APC-specific serpin for the treatment of hemophilia. Blood 2017; 129 (01) 105-113
  • 65 Wood JP, Ellery PE, Maroney SA, Mast AE. Biology of tissue factor pathway inhibitor. Blood 2014; 123 (19) 2934-2943
  • 66 Nordfang O, Valentin S, Beck TC, Hedner U. Inhibition of extrinsic pathway inhibitor shortens the coagulation time of normal plasma and of hemophilia plasma. Thromb Haemost 1991; 66 (04) 464-467
  • 67 Welsch DJ, Novotny WF, Wun TC. Effect of lipoprotein-associated coagulation inhibitor (LACI) on thromboplastin-induced coagulation of normal and hemophiliac plasmas. Thromb Res 1991; 64 (02) 213-222
  • 68 Erhardtsen E, Ezban M, Madsen MT. , et al. Blocking of tissue factor pathway inhibitor (TFPI) shortens the bleeding time in rabbits with antibody induced haemophilia A. Blood Coagul Fibrinolysis 1995; 6 (05) 388-394
  • 69 Hilden I, Lauritzen B, Sørensen BB. , et al. Hemostatic effect of a monoclonal antibody mAb 2021 blocking the interaction between FXa and TFPI in a rabbit hemophilia model. Blood 2012; 119 (24) 5871-5878
  • 70 Maroney SA, Cooley BC, Ferrel JP. , et al. Absence of hematopoietic tissue factor pathway inhibitor mitigates bleeding in mice with hemophilia. Proc Natl Acad Sci U S A 2012; 109 (10) 3927-3931
  • 71 Prasad S, Lillicrap D, Labelle A. , et al. Efficacy and safety of a new-class hemostatic drug candidate, AV513, in dogs with hemophilia A. Blood 2008; 111 (02) 672-679
  • 72 Waters EK, Genga RM, Schwartz MC. , et al. Aptamer ARC19499 mediates a procoagulant hemostatic effect by inhibiting tissue factor pathway inhibitor. Blood 2011; 117 (20) 5514-5522
  • 73 Parunov LA, Fadeeva OA, Balandina AN. , et al. Improvement of spatial fibrin formation by the anti-TFPI aptamer BAX499: changing clot size by targeting extrinsic pathway initiation. J Thromb Haemost 2011; 9 (09) 1825-1834
  • 74 Waters EK, Genga RM, Thomson HA. , et al. Aptamer BAX 499 mediates inhibition of tissue factor pathway inhibitor via interaction with multiple domains of the protein. J Thromb Haemost 2013; 11 (06) 1137-1145
  • 75 Dockal M, Hartmann R, Knappe S. , et al. Effect of increased tissue factor pathway inhibitor (TFPI) levels on factor Xa inhibition and global hemostasis in the presence of TFPI-antagonistic aptamer BAX 499. Blood 2012; 120 (21) 2207
  • 76 Dockal M, Hartmann R, Fries M. , et al. Small peptides blocking inhibition of factor Xa and tissue factor-factor VIIa by tissue factor pathway inhibitor (TFPI). J Biol Chem 2014; 289 (03) 1732-1741
  • 77 Maroney SA, Hansen KG, Mast AE. Cellular expression and biological activities of alternatively spliced forms of tissue factor pathway inhibitor. Curr Opin Hematol 2013; 20 (05) 403-409
  • 78 Di Micco B, Caen J, Colonna G. , et al. Inhibition of antithrombin by protein SV-IV normalizes the coagulation of hemophilic blood. Eur J Pharmacol 2000; 391 (1-2): 1-9
  • 79 Shetty S, Vora S, Kulkarni B. , et al. Contribution of natural anticoagulant and fibrinolytic factors in modulating the clinical severity of haemophilia patients. Br J Haematol 2007; 138 (04) 541-544
  • 80 Sehgal A, Barros S, Ivanciu L. , et al. An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia. Nat Med 2015; 21 (05) 492-497