Neuropediatrics 2017; 48(04): 233-241
DOI: 10.1055/s-0037-1604111
Review Article
Georg Thieme Verlag KG Stuttgart · New York

The Role of Muscle Imaging in the Diagnosis and Assessment of Children with Genetic Muscle Disease

Jodi Warman Chardon
1   Department of Genetics, Children's Hospital of Eastern Ontario/Research Institute, Ottawa, Ontario, Canada
2   Division of Neurology, The Ottawa Hospital/Research Institute, Ottawa, Canada
3   The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
,
Volker Straub
3   The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
› Author Affiliations
Further Information

Publication History

21 May 2017

28 May 2017

Publication Date:
02 July 2017 (online)

Abstract

Muscle magnetic resonance imaging (MRI) and ultrasound (US) are emerging tools to assist in the diagnosis of children with genetic muscle disease. Increasing number of studies demonstrate that these imaging techniques can identify selective patterns of muscle atrophy, fatty degeneration, and muscle edema that help to distinguish between different early-onset genetic myopathies and muscular dystrophies. Recognizing patterns of pathology by muscle imaging can help to guide genetic testing and avoid the more invasive procedure of a muscle biopsy. Conversely, since massive parallel sequencing is now more commonly used as the initial step in diagnostic testing, imaging techniques can help to confirm or exclude if a variant of uncertain significance is indeed disease causing and compatible with a pattern of pathology as detected by muscle imaging. Whereas for diagnostic purposes and pattern recognition, muscle pathology does not need to be quantified, measuring disease progression is increasingly supported by quantitative muscle imaging, which is critical given the recent increment in rare disease therapeutic trials. Here, we discuss the value of muscle imaging techniques in pediatric muscle disease and summarize data identifying specific patterns of involvement in muscle MRI and US in some of the more common genetic myopathies and muscular dystrophies.

 
  • References

  • 1 Bönnemann CG, Wang CH, Quijano-Roy S. , et al; Members of International Standard of Care Committee for Congenital Muscular Dystrophies. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 2014; 24 (04) 289-311
  • 2 North KN, Wang CH, Clarke N. , et al; International Standard of Care Committee for Congenital Myopathies. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord 2014; 24 (02) 97-116
  • 3 Quijano-Roy S, Avila-Smirnow D, Carlier RY. ; WB-MRI muscle study group. Whole body muscle MRI protocol: pattern recognition in early onset NM disorders. Neuromuscul Disord 2012; 22 (Suppl. 02) S68-S84
  • 4 Cejas CP, Serra MM, Galvez DFG. , et al. Muscle MRI in pediatrics: clinical, pathological and genetic correlation. Pediatr Radiol 2017; 47 (06) 724-735
  • 5 Diaz-Manera J, Llauger J, Gallardo E. , et al. Muscle MRI in muscular dystrophies. Acta myologica: myopathies and cardiomyopathies: Official journal of the Mediterranean Society of Myology/edited by the Gaetano Conte Academy for the study of striated muscle diseases 2015; 34 (2–3): 95-108
  • 6 Fischer D, Bonati U, Wattjes MP. Recent developments in muscle imaging of neuromuscular disorders. Curr Opin Neurol 2016; 29 (05) 614-620
  • 7 Kana V, Kellenberger CJ, Rushing EJ, Klein A. Muscle magnetic resonance imaging of the lower limbs: valuable diagnostic tool in the investigation of childhood neuromuscular disorders. Neuropediatrics 2014; 45 (05) 278-288
  • 8 Straub V, Carlier PG, Mercuri E. TREAT-NMD workshop: pattern recognition in genetic muscle diseases using muscle MRI: 25-26 February 2011, Rome, Italy. Neuromuscul Disord 2012; 22 (Suppl. 02) S42-S53
  • 9 Wattjes MP, Kley RA, Fischer D. Neuromuscular imaging in inherited muscle diseases. Eur Radiol 2010; 20 (10) 2447-2460
  • 10 Pillen S, Verrips A, van Alfen N, Arts IM, Sie LT, Zwarts MJ. Quantitative skeletal muscle ultrasound: diagnostic value in childhood neuromuscular disease. Neuromuscul Disord 2007; 17 (07) 509-516
  • 11 Simon NG, Noto YI, Zaidman CM. Skeletal muscle imaging in neuromuscular disease. J Clin Neurosci 2016; 33: 1-10
  • 12 Mercuri E, Pichiecchio A, Allsop J, Messina S, Pane M, Muntoni F. Muscle MRI in inherited neuromuscular disorders: past, present, and future. J Magn Reson Imaging 2007; 25 (02) 433-440
  • 13 Arpan I, Willcocks RJ, Forbes SC. , et al. Examination of effects of corticosteroids on skeletal muscles of boys with DMD using MRI and MRS. Neurology 2014; 83 (11) 974-980
  • 14 Fischmann A, Hafner P, Fasler S. , et al. Quantitative MRI can detect subclinical disease progression in muscular dystrophy. J Neurol 2012; 259 (08) 1648-1654
  • 15 Forbes SC, Willcocks RJ, Rooney WD, Walter GA, Vandenborne K. MRI quantifies neuromuscular disease progression. Lancet Neurol 2016; 15 (01) 26-28
  • 16 Willcocks RJ, Rooney WD, Triplett WT. , et al. Multicenter prospective longitudinal study of magnetic resonance biomarkers in a large Duchenne muscular dystrophy cohort. Ann Neurol 2016; 79 (04) 535-547
  • 17 Willis TA, Hollingsworth KG, Coombs A. , et al. Quantitative muscle MRI as an assessment tool for monitoring disease progression in LGMD2I: a multicentre longitudinal study. PLoS One 2013; 8 (08) e70993
  • 18 Zaidman CM, Malkus EC, Connolly AM. Muscle ultrasound quantifies disease progression over time in infants and young boys with Duchenne muscular dystrophy. Muscle Nerve 2015; 52 (03) 334-338
  • 19 Leung DG. Magnetic resonance imaging patterns of muscle involvement in genetic muscle diseases: a systematic review. J Neurol 2016
  • 20 Ten Dam L, van der Kooi AJ, Verhamme C, Wattjes MP, de Visser M. Muscle imaging in inherited and acquired muscle diseases. Eur J Neurol 2016; 23 (04) 688-703
  • 21 Murphy WA, Totty WG, Carroll JE. MRI of normal and pathologic skeletal muscle. AJR Am J Roentgenol 1986; 146 (03) 565-574
  • 22 Jarraya M, Quijano-Roy S, Monnier N. , et al. Whole-body muscle MRI in a series of patients with congenital myopathy related to TPM2 gene mutations. Neuromuscul Disord 2012; 22 (Suppl. 02) S137-S147
  • 23 Mercuri E, Pichiecchio A, Counsell S. , et al. A short protocol for muscle MRI in children with muscular dystrophies. Eur J Paediatr Neurol 2002; 6 (06) 305-307
  • 24 Klein A, Jungbluth H, Clement E. , et al. Muscle magnetic resonance imaging in congenital myopathies due to ryanodine receptor type 1 gene mutations. Arch Neurol 2011; 68 (09) 1171-1179
  • 25 Gómez-Andrés D, Dabaj I, Mompoint D. , et al. Pediatric laminopathies: whole-body magnetic resonance imaging fingerprint and comparison with Sepn1 myopathy. Muscle Nerve 2016; 54 (02) 192-202
  • 26 Morrow JM, Sinclair CD, Fischmann A. , et al. MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study. Lancet Neurol 2016; 15 (01) 65-77
  • 27 Díaz-Manera J, Alejaldre A, González L. , et al. Muscle imaging in muscle dystrophies produced by mutations in the EMD and LMNA genes. Neuromuscul Disord 2016; 26 (01) 33-40
  • 28 Pillen S, van Alfen N. Skeletal muscle ultrasound. Neurol Res 2011; 33 (10) 1016-1024
  • 29 Mendell JR, Shilling C, Leslie ND. , et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol 2012; 71 (03) 304-313
  • 30 Hoffman EP, Fischbeck KH, Brown RH. , et al. Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne's or Becker's muscular dystrophy. N Engl J Med 1988; 318 (21) 1363-1368
  • 31 Tennyson CN, Klamut HJ, Worton RG. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 1995; 9 (02) 184-190
  • 32 Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2003; 2 (12) 731-740
  • 33 Bonati U, Hafner P, Schädelin S. , et al. Quantitative muscle MRI: a powerful surrogate outcome measure in Duchenne muscular dystrophy. Neuromuscul Disord 2015; 25 (09) 679-685
  • 34 Fischmann A, Hafner P, Gloor M. , et al. Quantitative MRI and loss of free ambulation in Duchenne muscular dystrophy. J Neurol 2013; 260 (04) 969-974
  • 35 Forbes SC, Willcocks RJ, Triplett WT. , et al. Magnetic resonance imaging and spectroscopy assessment of lower extremity skeletal muscles in boys with Duchenne muscular dystrophy: a multicenter cross sectional study. PLoS One 2014; 9 (09) e106435
  • 36 Hafner P, Bonati U, Rubino D. , et al. Treatment with L-citrulline and metformin in Duchenne muscular dystrophy: study protocol for a single-centre, randomised, placebo-controlled trial. Trials 2016; 17 (01) 389
  • 37 Hollingsworth KG, Garrood P, Eagle M, Bushby K, Straub V. Magnetic resonance imaging in Duchenne muscular dystrophy: longitudinal assessment of natural history over 18 months. Muscle Nerve 2013; 48 (04) 586-588
  • 38 Willcocks RJ, Arpan IA, Forbes SC. , et al. Longitudinal measurements of MRI-T2 in boys with Duchenne muscular dystrophy: effects of age and disease progression. Neuromuscul Disord 2014; 24 (05) 393-401
  • 39 Willcocks RJ, Triplett WT, Forbes SC. , et al. Magnetic resonance imaging of the proximal upper extremity musculature in boys with Duchenne muscular dystrophy. J Neurol 2017; 264 (01) 64-71
  • 40 Faridian-Aragh N, Wagner KR, Leung DG, Carrino JA. Magnetic resonance imaging phenotyping of Becker muscular dystrophy. Muscle Nerve 2014; 50 (06) 962-967
  • 41 Li W, Zheng Y, Zhang W, Wang Z, Xiao J, Yuan Y. Progression and variation of fatty infiltration of the thigh muscles in Duchenne muscular dystrophy, a muscle magnetic resonance imaging study. Neuromuscul Disord 2015; 25 (05) 375-380
  • 42 Polavarapu K, Manjunath M, Preethish-Kumar V. , et al. Muscle MRI in Duchenne muscular dystrophy: evidence of a distinctive pattern. Neuromuscul Disord 2016; 26 (11) 768-774
  • 43 Tasca G, Iannaccone E, Monforte M. , et al. Muscle MRI in Becker muscular dystrophy. Neuromuscul Disord 2012; 22 (Suppl. 02) S100-S106
  • 44 Jansen M, van Alfen N, Nijhuis van der Sanden MW, van Dijk JP, Pillen S, de Groot IJ. Quantitative muscle ultrasound is a promising longitudinal follow-up tool in Duchenne muscular dystrophy. Neuromuscul Disord 2012; 22 (04) 306-317
  • 45 Durbeej M, Campbell KP. Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr Opin Genet Dev 2002; 12 (03) 349-361
  • 46 Endo T. Glycobiology of α-dystroglycan and muscular dystrophy. J Biochem 2015; 157 (01) 1-12
  • 47 Yoshida-Moriguchi T, Campbell KP. Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology 2015; 25 (07) 702-713
  • 48 Fischer D, Walter MC, Kesper K. , et al. Diagnostic value of muscle MRI in differentiating LGMD2I from other LGMDs. J Neurol 2005; 252 (05) 538-547
  • 49 Willis TA, Hollingsworth KG, Coombs A. , et al. Quantitative magnetic resonance imaging in limb-girdle muscular dystrophy 2I: a multinational cross-sectional study. PLoS One 2014; 9 (02) e90377
  • 50 Groen EJ, Charlton R, Barresi R. , et al. Analysis of the UK diagnostic strategy for limb girdle muscular dystrophy 2A. Brain 2007; 130 (Pt 12): 3237-3249
  • 51 Briñas L, Richard P, Quijano-Roy S. , et al. Early onset collagen VI myopathies: Genetic and clinical correlations. Ann Neurol 2010; 68 (04) 511-520
  • 52 Yonekawa T, Nishino I. Ullrich congenital muscular dystrophy: clinicopathological features, natural history and pathomechanism(s). J Neurol Neurosurg Psychiatry 2015; 86 (03) 280-287
  • 53 Foley AR, Quijano-Roy S, Collins J. , et al. Natural history of pulmonary function in collagen VI-related myopathies. Brain 2013; 136 (Pt 12): 3625-3633
  • 54 Lampe AK, Bushby KM. Collagen VI related muscle disorders. J Med Genet 2005; 42 (09) 673-685
  • 55 Deconinck N, Richard P, Allamand V. , et al. Bethlem myopathy: long-term follow-up identifies COL6 mutations predicting severe clinical evolution. J Neurol Neurosurg Psychiatry 2015; 86 (12) 1337-1346
  • 56 Jöbsis GJ, Boers JM, Barth PG, de Visser M. Bethlem myopathy: a slowly progressive congenital muscular dystrophy with contractures. Brain 1999; 122 (Pt 4): 649-655
  • 57 Bönnemann CG. The collagen VI-related myopathies: muscle meets its matrix. Nat Rev Neurol 2011; 7 (07) 379-390
  • 58 Camacho Vanegas O, Bertini E, Zhang RZ. , et al. Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI. Proc Natl Acad Sci U S A 2001; 98 (13) 7516-7521
  • 59 Jöbsis GJ, Keizers H, Vreijling JP. , et al. Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures. Nat Genet 1996; 14 (01) 113-115
  • 60 Mercuri E, Yuva Y, Brown SC. , et al. Collagen VI involvement in Ullrich syndrome: a clinical, genetic, and immunohistochemical study. Neurology 2002; 58 (09) 1354-1359
  • 61 Higuchi I, Horikiri T, Niiyama T. , et al. Pathological characteristics of skeletal muscle in Ullrich's disease with collagen VI deficiency. Neuromuscul Disord 2003; 13 (04) 310-316
  • 62 Mercuri E, Lampe A, Allsop J. , et al. Muscle MRI in Ullrich congenital muscular dystrophy and Bethlem myopathy. Neuromuscul Disord 2005; 15 (04) 303-310
  • 63 Fu J, Zheng YM, Jin SQ. , et al. “Target” and “Sandwich” signs in thigh muscles have high diagnostic values for Collagen VI-related myopathies. Chin Med J (Engl) 2016; 129 (15) 1811-1816
  • 64 Cruz S, Figueroa-Bonaparte S, Gallardo E. , et al. Bethlem myopathy phenotypes and follow up: description of 8 patients at the mildest end of the spectrum. J Neuromuscul Dis 2016; 3 (02) 267-274
  • 65 Bönnemann CG, Brockmann K, Hanefeld F. Muscle ultrasound in Bethlem myopathy. Neuropediatrics 2003; 34 (06) 335-336
  • 66 Mendell JR, Boué DR, Martin PT. The congenital muscular dystrophies: recent advances and molecular insights. Pediatr Dev Pathol 2006; 9 (06) 427-443
  • 67 Nelson I, Stojkovic T, Allamand V. , et al. Laminin α2 deficiency-related muscular dystrophy mimicking emery-dreifuss and collagen VI related diseases. J Neuromuscul Dis 2015; 2 (03) 229-240
  • 68 Chan SH, Foley AR, Phadke R. , et al. Limb girdle muscular dystrophy due to LAMA2 mutations: diagnostic difficulties due to associated peripheral neuropathy. Neuromuscul Disord 2014; 24 (08) 677-683
  • 69 Beytía MdeL, Dekomien G, Hoffjan S, Haug V, Anastasopoulos C, Kirschner J. High creatine kinase levels and white matter changes: clinical and genetic spectrum of congenital muscular dystrophies with laminin alpha-2 deficiency. Mol Cell Probes 2014; 28 (04) 118-122
  • 70 Geranmayeh F, Clement E, Feng LH. , et al. Genotype-phenotype correlation in a large population of muscular dystrophy patients with LAMA2 mutations. Neuromuscul Disord 2010; 20 (04) 241-250
  • 71 Herrmann R, Straub V, Meyer K, Kahn T, Wagner M, Voit T. Congenital muscular dystrophy with laminin alpha 2 chain deficiency: identification of a new intermediate phenotype and correlation of clinical findings to muscle immunohistochemistry. Eur J Pediatr 1996; 155 (11) 968-976
  • 72 Sewry CA, Naom I, D'Alessandro M. , et al. Variable clinical phenotype in merosin-deficient congenital muscular dystrophy associated with differential immunolabelling of two fragments of the laminin alpha 2 chain. Neuromuscul Disord 1997; 7 (03) 169-175
  • 73 Harris E, McEntagart M, Topf A. , et al. Clinical and neuroimaging findings in two brothers with limb girdle muscular dystrophy due to LAMA2 mutations. Neuromuscul Disord 2017; 27 (02) 170-174
  • 74 Alkan A, Sigirci A, Kutlu R, Aslan M, Doganay S, Yakinci C. Merosin-negative congenital muscular dystrophy: diffusion-weighted imaging findings of brain. J Child Neurol 2007; 22 (05) 655-659
  • 75 Moghadaszadeh B, Petit N, Jaillard C. , et al. Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat Genet 2001; 29 (01) 17-18
  • 76 Ferreiro A, Quijano-Roy S, Pichereau C. , et al. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet 2002; 71 (04) 739-749
  • 77 Ferreiro A, Ceuterick-de Groote C, Marks JJ. , et al. Desmin-related myopathy with Mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann Neurol 2004; 55 (05) 676-686
  • 78 Clarke NF, Kidson W, Quijano-Roy S. , et al. SEPN1: associated with congenital fiber-type disproportion and insulin resistance. Ann Neurol 2006; 59 (03) 546-552
  • 79 Schara U, Kress W, Bönnemann CG. , et al. The phenotype and long-term follow-up in 11 patients with juvenile selenoprotein N1-related myopathy. Eur J Paediatr Neurol 2008; 12 (03) 224-230
  • 80 Mercuri E, Clements E, Offiah A. , et al. Muscle magnetic resonance imaging involvement in muscular dystrophies with rigidity of the spine. Ann Neurol 2010; 67 (02) 201-208
  • 81 Hankiewicz K, Carlier RY, Lazaro L. , et al. Whole-body muscle magnetic resonance imaging in SEPN1-related myopathy shows a homogeneous and recognizable pattern. Muscle Nerve 2015; 52 (05) 728-735
  • 82 Quane KA, Healy JM, Keating KE. , et al. Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat Genet 1993; 5 (01) 51-55
  • 83 Dowling JJ, Lillis S, Amburgey K. , et al. King-Denborough syndrome with and without mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 2011; 21 (06) 420-427
  • 84 Duarte ST, Oliveira J, Santos R. , et al. Dominant and recessive RYR1 mutations in adults with core lesions and mild muscle symptoms. Muscle Nerve 2011; 44 (01) 102-108
  • 85 Jungbluth H, Zhou H, Sewry CA. , et al. Centronuclear myopathy due to a de novo dominant mutation in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 2007; 17 (04) 338-345
  • 86 Løseth S, Voermans NC, Torbergsen T. , et al. A novel late-onset axial myopathy associated with mutations in the skeletal muscle ryanodine receptor (RYR1) gene. J Neurol 2013; 260 (06) 1504-1510
  • 87 Snoeck M, van Engelen BG, Küsters B. , et al. RYR1-related myopathies: a wide spectrum of phenotypes throughout life. Eur J Neurol 2015; 22 (07) 1094-1112
  • 88 Clarke NF, Waddell LB, Cooper ST. , et al. Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Hum Mutat 2010; 31 (07) E1544-E1550
  • 89 Guis S, Figarella-Branger D, Monnier N. , et al. Multiminicore disease in a family susceptible to malignant hyperthermia: histology, in vitro contracture tests, and genetic characterization. Arch Neurol 2004; 61 (01) 106-113
  • 90 Bione S, Maestrini E, Rivella S. , et al. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 1994; 8 (04) 323-327
  • 91 Bonne G, Di Barletta MR, Varnous S. , et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 1999; 21 (03) 285-288
  • 92 Brown CA, Scharner J, Felice K. , et al. Novel and recurrent EMD mutations in patients with Emery-Dreifuss muscular dystrophy, identify exon 2 as a mutation hot spot. J Hum Genet 2011; 56 (08) 589-594
  • 93 Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 2009; 10 (01) 75-82
  • 94 Nagano A, Koga R, Ogawa M. , et al. Emerin deficiency at the nuclear membrane in patients with Emery-Dreifuss muscular dystrophy. Nat Genet 1996; 12 (03) 254-259
  • 95 Schessl J, Feldkirchner S, Kubny C, Schoser B. Reducing body myopathy and other FHL1-related muscular disorders. Semin Pediatr Neurol 2011; 18 (04) 257-263
  • 96 Astrea G, Schessl J, Clement E. , et al. Muscle MRI in FHL1-linked reducing body myopathy. Neuromuscul Disord 2009; 19 (10) 689-691
  • 97 Mercuri E, Poppe M, Quinlivan R. , et al. Extreme variability of phenotype in patients with an identical missense mutation in the lamin A/C gene: from congenital onset with severe phenotype to milder classic Emery-Dreifuss variant. Arch Neurol 2004; 61 (05) 690-694
  • 98 Prigogine C, Richard P, Van den Bergh P, Groswasser J, Deconinck N. Novel LMNA mutation presenting as severe congenital muscular dystrophy. Pediatr Neurol 2010; 43 (04) 283-286
  • 99 Quijano-Roy S, Mbieleu B, Bönnemann CG. , et al. De novo LMNA mutations cause a new form of congenital muscular dystrophy. Ann Neurol 2008; 64 (02) 177-186
  • 100 Muchir A, Bonne G, van der Kooi AJ. , et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet 2000; 9 (09) 1453-1459
  • 101 MacLeod HM, Culley MR, Huber JM, McNally EM. Lamin A/C truncation in dilated cardiomyopathy with conduction disease. BMC Med Genet 2003; 4: 4
  • 102 Chaouch M, Allal Y, De Sandre-Giovannoli A. , et al. The phenotypic manifestations of autosomal recessive axonal Charcot-Marie-Tooth due to a mutation in Lamin A/C gene. Neuromuscul Disord 2003; 13 (01) 60-67
  • 103 Shackleton S, Lloyd DJ, Jackson SN. , et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet 2000; 24 (02) 153-156
  • 104 Cao H, Hegele RA. LMNA is mutated in Hutchinson-Gilford progeria (MIM 176670) but not in Wiedemann-Rautenstrauch progeroid syndrome (MIM 264090). J Hum Genet 2003; 48 (05) 271-274
  • 105 Tan D, Yang H, Yuan Y. , et al. Phenotype-genotype analysis of Chinese patients with early-onset LMNA-related muscular dystrophy. PLoS One 2015; 10 (06) e0129699
  • 106 Carboni N, Mura M, Marrosu G. , et al. Muscle imaging analogies in a cohort of patients with different clinical phenotypes caused by LMNA gene mutations. Muscle Nerve 2010; 41 (04) 458-463
  • 107 Kishnani PS, Hwu WL, Mandel H, Nicolino M, Yong F, Corzo D. ; Infantile-Onset Pompe Disease Natural History Study Group. A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr 2006; 148 (05) 671-676
  • 108 Lukacs Z, Nieves Cobos P, Wenninger S. , et al. Prevalence of Pompe disease in 3,076 patients with hyperCKemia and limb-girdle muscular weakness. Neurology 2016; 87 (03) 295-298
  • 109 Vissing J, Lukacs Z, Straub V. Diagnosis of Pompe disease: muscle biopsy vs blood-based assays. JAMA Neurol 2013; 70 (07) 923-927
  • 110 Carlier RY, Laforet P, Wary C. , et al. Whole-body muscle MRI in 20 patients suffering from late onset Pompe disease: involvement patterns. Neuromuscul Disord 2011; 21 (11) 791-799
  • 111 Figueroa-Bonaparte S, Segovia S, Llauger J. , et al; Spanish Pompe Study Group. Muscle MRI findings in childhood/adult onset Pompe disease correlate with muscle function. PLoS One 2016; 11 (10) e0163493
  • 112 Alejaldre A, Díaz-Manera J, Ravaglia S. , et al. Trunk muscle involvement in late-onset Pompe disease: study of thirty patients. Neuromuscul Disord 2012; 22 (Suppl. 02) S148-S154
  • 113 Pichiecchio A, Berardinelli A, Moggio M. , et al. Asymptomatic Pompe disease: can muscle magnetic resonance imaging facilitate diagnosis?. Muscle Nerve 2016; 53 (02) 326-327
  • 114 Vill K, Schessl J, Teusch V. , et al. Muscle ultrasound in classic infantile and adult Pompe disease: a useful screening tool in adults but not in infants. Neuromuscul Disord 2015; 25 (02) 120-126
  • 115 Pichiecchio A, Rossi M, Cinnante C. , et al. Muscle MRI of classic infantile pompe patients: fatty substitution and edema-like changes. Muscle Nerve 2017; 55 (06) 841-848
  • 116 Ricci G, Ruggiero L, Vercelli L. , et al. A novel clinical tool to classify facioscapulohumeral muscular dystrophy phenotypes. J Neurol 2016; 263 (06) 1204-1214
  • 117 Ricci G, Zatz M, Tupler R. Facioscapulohumeral muscular dystrophy: more complex than it appears. Curr Mol Med 2014; 14 (08) 1052-1068
  • 118 Statland JM, Tawil R. Facioscapulohumeral muscular dystrophy. Continuum (Minneap Minn) 2016; 22 (6, Muscle and Neuromuscular Junction Disorders): 1916-1931
  • 119 Tawil R, Van Der Maarel SM. Facioscapulohumeral muscular dystrophy. Muscle Nerve 2006; 34 (01) 1-15
  • 120 Goselink RJ, Schreuder TH, Mul K. , et al. Facioscapulohumeral dystrophy in children: design of a prospective, observational study on natural history, predictors and clinical impact (iFocus FSHD). BMC Neurol 2016; 16: 138
  • 121 Klinge L, Eagle M, Haggerty ID, Roberts CE, Straub V, Bushby KM. Severe phenotype in infantile facioscapulohumeral muscular dystrophy. Neuromuscul Disord 2006; 16 (9–10): 553-558
  • 122 Padberg GW, Brouwer OF, de Keizer RJ. , et al. On the significance of retinal vascular disease and hearing loss in facioscapulohumeral muscular dystrophy. Muscle Nerve Suppl 1995; 2: S73-S80
  • 123 Balog J, Thijssen PE, Shadle S. , et al. Increased DUX4 expression during muscle differentiation correlates with decreased SMCHD1 protein levels at D4Z4. Epigenetics 2015; 10 (12) 1133-1142
  • 124 Daxinger L, Tapscott SJ, van der Maarel SM. Genetic and epigenetic contributors to FSHD. Curr Opin Genet Dev 2015; 33: 56-61
  • 125 Fatehi F, Salort-Campana E, Le Troter A, Bendahan D, Attarian S. Muscle MRI of facioscapulohumeral dystrophy (FSHD): a growing demand and a promising approach. Rev Neurol (Paris) 2016; 172 (10) 566-571
  • 126 Gerevini S, Scarlato M, Maggi L. , et al. Muscle MRI findings in facioscapulohumeral muscular dystrophy. Eur Radiol 2016; 26 (03) 693-705
  • 127 Lareau-Trudel E, Le Troter A, Ghattas B. , et al. Muscle quantitative MR imaging and clustering analysis in patients with facioscapulohumeral muscular dystrophy type 1. PLoS One 2015; 10 (07) e0132717
  • 128 Leung DG, Carrino JA, Wagner KR, Jacobs MA. Whole-body magnetic resonance imaging evaluation of facioscapulohumeral muscular dystrophy. Muscle Nerve 2015; 52 (04) 512-520
  • 129 Mair D, Huegens-Penzel M, Kress W, Roth C, Ferbert A. Leg muscle involvement in facioscapulohumeral muscular dystrophy: comparison between facioscapulohumeral muscular dystrophy types 1 and 2. Eur Neurol 2017; 77 (1–2): 32-39
  • 130 Schreiber O, Schneiderat P, Kress W. , et al. Facioscapulohumeral muscular dystrophy and Charcot-Marie-Tooth neuropathy 1A - evidence for “double trouble” overlapping syndromes. BMC Med Genet 2013; 14: 92
  • 131 Tasca G, Monforte M, Ottaviani P. , et al. Magnetic resonance imaging in a large cohort of facioscapulohumeral muscular dystrophy patients: pattern refinement and implications for clinical trials. Ann Neurol 2016; DOI: 10.1002/ana.24640.
  • 132 Tasca G, Monforte M, Iannaccone E. , et al. Upper girdle imaging in facioscapulohumeral muscular dystrophy. PLoS One 2014; 9 (06) e100292
  • 133 Andersen G, Dahlqvist JR, Vissing CR, Heje K, Thomsen C, Vissing J. MRI as outcome measure in facioscapulohumeral muscular dystrophy: 1-year follow-up of 45 patients. J Neurol 2017; 264 (03) 438-447
  • 134 Mercuri E. An integrated approach to the diagnosis of muscle disorders: what is the role of muscle imaging?. Dev Med Child Neurol 2010; 52 (08) 693