Neuropediatrics 2018; 49(01): 018-025
DOI: 10.1055/s-0037-1608652
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Congenital Disorders of Autophagy: What a Pediatric Neurologist Should Know

Darius Ebrahimi-Fakhari
1   Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
› Author Affiliations
Further Information

Publication History

14 August 2017

26 September 2017

Publication Date:
07 November 2017 (online)

Abstract

Autophagy is a fundamental and conserved intracellular pathway that mediates the degradation of macromolecules and organelles in lysosomes. Proper autophagy function is important for central nervous system development and neuronal function. Over the last 5 years, several single gene disorders of the autophagy pathway have emerged: EPG5-associated Vici syndrome, WDR45-associated β-propeller protein-associated neurodegeneration, SNX14-associated autosomal-recessive spinocerebellar ataxia 20, ATG5-associated autosomal-recessive ataxia syndrome, SQSTM1/p62-associated childhood-onset neurodegeneration, and several forms of the hereditary spastic paraplegias. This novel and evolving group of disorders is characterized by prominent central nervous system involvement leading to brain malformations, developmental delay, intellectual disability, epilepsy, movement disorders, and neurodegeneration. Predominant involvement of the long white matter tracts and the cerebellum are anatomic and imaging hallmarks, with common findings that include a thinning of the corpus callosum and cerebellar hypoplasia or atrophy. A storage disease phenotype by clinical or imaging criteria is present in some diseases. Most congenital disorders of autophagy are progressive and over time involve pathology in multiple brain regions. This review provides a detailed clinical, imaging and genetic characterization of congenital disorders of autophagy and highlights the importance of this pathway for childhood-onset neurological diseases.

 
  • References

  • 1 Ohsumi Y. Historical landmarks of autophagy research. Cell Res 2014; 24 (01) 9-23
  • 2 Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol 2010; 12 (09) 814-822
  • 3 Ebrahimi-Fakhari D, Wahlster L, Hoffmann GF, Kölker S. Emerging role of autophagy in pediatric neurodegenerative and neurometabolic diseases. Pediatr Res 2014; 75 (1-2): 217-226
  • 4 Bento CF, Renna M, Ghislat G. , et al. Mammalian autophagy: how does it work?. Annu Rev Biochem 2016; 85: 685-713
  • 5 Galluzzi L, Baehrecke EH, Ballabio A. , et al. Molecular definitions of autophagy and related processes. EMBO J 2017; 36 (13) 1811-1836
  • 6 Ebrahimi-Fakhari D, Saffari A, Wahlster L, Sahin M. Using tuberous sclerosis complex to understand the impact of MTORC1 signaling on mitochondrial dynamics and mitophagy in neurons. Autophagy 2017; 13 (04) 754-756
  • 7 Ebrahimi-Fakhari D, Saffari A, Wahlster L. , et al. Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Reports 2016; 17 (04) 1053-1070
  • 8 Ebrahimi-Fakhari D, Saffari A, Wahlster L. , et al. Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism. Brain 2016; 139 (Pt 2): 317-337
  • 9 Di Nardo A, Wertz MH, Kwiatkowski E. , et al. Neuronal Tsc1/2 complex controls autophagy through AMPK-dependent regulation of ULK1. Hum Mol Genet 2014; 23 (14) 3865-3874
  • 10 Klionsky DJ, Abdelmohsen K, Abe A. , et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016; 12 (01) 1-222
  • 11 Maday S, Holzbaur EL. Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev Cell 2014; 30 (01) 71-85
  • 12 Dionisi Vici C, Sabetta G, Gambarara M. , et al. Agenesis of the corpus callosum, combined immunodeficiency, bilateral cataract, and hypopigmentation in two brothers. Am J Med Genet 1988; 29 (01) 1-8
  • 13 Cullup T, Kho AL, Dionisi-Vici C. , et al. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat Genet 2013; 45 (01) 83-87
  • 14 Byrne S, Jansen L, U-King-Im JM. , et al. EPG5-related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy. Brain 2016; 139 (Pt 3): 765-781
  • 15 Cullup T, Dionisi-Vici C, Kho AL. , et al. Clinical utility gene card for: Vici syndrome. Eur J Hum Genet 2014;22(3)
  • 16 Hori I, Otomo T, Nakashima M. , et al. Defects in autophagosome-lysosome fusion underlie Vici syndrome, a neurodevelopmental disorder with multisystem involvement. Sci Rep 2017; 7 (01) 3552
  • 17 Ehmke N, Parvaneh N, Krawitz P. , et al. First description of a patient with Vici syndrome due to a mutation affecting the penultimate exon of EPG5 and review of the literature. Am J Med Genet A 2014; 164A (12) 3170-3175
  • 18 Kane MS, Vilboux T, Wolfe LA. , et al. Aberrant splicing induced by the most common EPG5 mutation in an individual with Vici syndrome. Brain 2016; 139 (Pt 9): e52
  • 19 Tian Y, Li Z, Hu W. , et al. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 2010; 141 (06) 1042-1055
  • 20 Zhao H, Zhao YG, Wang X. , et al. Mice deficient in Epg5 exhibit selective neuronal vulnerability to degeneration. J Cell Biol 2013; 200 (06) 731-741
  • 21 Zhao YG, Zhao H, Sun H, Zhang H. Role of Epg5 in selective neurodegeneration and Vici syndrome. Autophagy 2013; 9 (08) 1258-1262
  • 22 Wang Z, Miao G, Xue X. , et al. The Vici syndrome protein EPG5 is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. Mol Cell 2016; 63 (05) 781-795
  • 23 Byrne S, Dionisi-Vici C, Smith L, Gautel M, Jungbluth H. Vici syndrome: a review. Orphanet J Rare Dis 2016; 11: 21
  • 24 Miyata R, Hayashi M, Itoh E. Pathological changes in cardiac muscle and cerebellar cortex in Vici syndrome. Am J Med Genet A 2014; 164A (12) 3203-3205
  • 25 Hedberg-Oldfors C, Darin N, Oldfors A. Muscle pathology in Vici syndrome-A case study with a novel mutation in EPG5 and a summary of the literature. Neuromuscul Disord 2017; 27 (08) 771-776
  • 26 Haack TB, Hogarth P, Kruer MC. , et al. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am J Hum Genet 2012; 91 (06) 1144-1149
  • 27 Saitsu H, Nishimura T, Muramatsu K. , et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 2013; 45 (04) 445-449 , e1
  • 28 Nakashima M, Takano K, Tsuyusaki Y. , et al. WDR45 mutations in three male patients with West syndrome. J Hum Genet 2016; 61 (07) 653-661
  • 29 Zarate YA, Jones JR, Jones MA. , et al. Lessons from a pair of siblings with BPAN. Eur J Hum Genet 2016; 24 (07) 1095
  • 30 Abidi A, Mignon-Ravix C, Cacciagli P, Girard N, Milh M, Villard L. Early-onset epileptic encephalopathy as the initial clinical presentation of WDR45 deletion in a male patient. Eur J Hum Genet 2016; 24 (04) 615-618
  • 31 Hayflick SJ, Kruer MC, Gregory A. , et al. β-Propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. Brain 2013; 136 (Pt 6): 1708-1717
  • 32 Okamoto N, Ikeda T, Hasegawa T. , et al. Early manifestations of BPAN in a pediatric patient. Am J Med Genet A 2014; 164A (12) 3095-3099
  • 33 Ohba C, Nabatame S, Iijima Y. , et al. De novo WDR45 mutation in a patient showing clinically Rett syndrome with childhood iron deposition in brain. J Hum Genet 2014; 59 (05) 292-295
  • 34 Nishioka K, Oyama G, Yoshino H. , et al. High frequency of beta-propeller protein-associated neurodegeneration (BPAN) among patients with intellectual disability and young-onset parkinsonism. Neurobiol Aging 2015; 36 (05) 2004.e9-2004.e15
  • 35 Verhoeven WM, Egger JI, Koolen DA. , et al. Beta-propeller protein-associated neurodegeneration (BPAN), a rare form of NBIA: novel mutations and neuropsychiatric phenotype in three adult patients. Parkinsonism Relat Disord 2014; 20 (03) 332-336
  • 36 Yoganathan S, Arunachal G, Sudhakar SV, Rajaraman V, Thomas M, Danda S. Beta propellar protein-associated neurodegeneration: a rare cause of infantile autistic regression and intracranial calcification. Neuropediatrics 2016; 47 (02) 123-127
  • 37 Rathore GS, Schaaf CP, Stocco AJ. Novel mutation of the WDR45 gene causing beta-propeller protein-associated neurodegeneration. Mov Disord 2014; 29 (04) 574-575
  • 38 Kruer MC, Boddaert N, Schneider SA. , et al. Neuroimaging features of neurodegeneration with brain iron accumulation. AJNR Am J Neuroradiol 2012; 33 (03) 407-414
  • 39 Ichinose Y, Miwa M, Onohara A. , et al. Characteristic MRI findings in beta-propeller protein-associated neurodegeneration (BPAN). Neurol Clin Pract 2014; 4 (02) 175-177
  • 40 Paudel R, Li A, Wiethoff S. , et al. Neuropathology of beta-propeller protein associated neurodegeneration (BPAN): a new tauopathy. Acta Neuropathol Commun 2015; 3: 39
  • 41 Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature 2010; 466 (7302): 68-76
  • 42 Orsi A, Razi M, Dooley HC. , et al. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell 2012; 23 (10) 1860-1873
  • 43 Lu Q, Yang P, Huang X. , et al. The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev Cell 2011; 21 (02) 343-357
  • 44 Zhao YG, Sun L, Miao G. , et al. The autophagy gene Wdr45/Wipi4 regulates learning and memory function and axonal homeostasis. Autophagy 2015; 11 (06) 881-890
  • 45 Ebrahimi-Fakhari D, Wahlster L, McLean PJ. Protein degradation pathways in Parkinson's disease: curse or blessing. Acta Neuropathol 2012; 124 (02) 153-172
  • 46 Menzies FM, Fleming A, Caricasole A. , et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 2017; 93 (05) 1015-1034
  • 47 Klebe S, Stevanin G, Depienne C. Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol (Paris) 2015; 171 (6-7): 505-530
  • 48 Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 2014; 42 (03) 174-183
  • 49 Marras C, Lang A, van de Warrenburg BP. , et al. Nomenclature of genetic movement disorders: Recommendations of the international Parkinson and movement disorder society task force. Mov Disord 2016; 31 (04) 436-457
  • 50 Pensato V, Castellotti B, Gellera C. , et al. Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48. Brain 2014; 137 (Pt 7): 1907-1920
  • 51 Siri L, Battaglia FM, Tessa A. , et al. Cognitive profile in spastic paraplegia with thin corpus callosum and mutations in SPG11. Neuropediatrics 2010; 41 (01) 35-38
  • 52 Chang J, Lee S, Blackstone C. Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation. J Clin Invest 2014; 124 (12) 5249-5262
  • 53 Renvoisé B, Chang J, Singh R. , et al. Lysosomal abnormalities in hereditary spastic paraplegia types SPG15 and SPG11. Ann Clin Transl Neurol 2014; 1 (06) 379-389
  • 54 Khundadze M, Kollmann K, Koch N. , et al. A hereditary spastic paraplegia mouse model supports a role of ZFYVE26/SPASTIZIN for the endolysosomal system. PLoS Genet 2013; 9 (12) e1003988
  • 55 Vantaggiato C, Crimella C, Airoldi G. , et al. Defective autophagy in spastizin mutated patients with hereditary spastic paraparesis type 15. Brain 2013; 136 (Pt 10): 3119-3139
  • 56 Abou Jamra R, Philippe O, Raas-Rothschild A. , et al. Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. Am J Hum Genet 2011; 88 (06) 788-795
  • 57 Hirst J, Irving C, Borner GH. Adaptor protein complexes AP-4 and AP-5: new players in endosomal trafficking and progressive spastic paraplegia. Traffic 2013; 14 (02) 153-164
  • 58 Matsuda S, Miura E, Matsuda K. , et al. Accumulation of AMPA receptors in autophagosomes in neuronal axons lacking adaptor protein AP-4. Neuron 2008; 57 (05) 730-745
  • 59 Oz-Levi D, Ben-Zeev B, Ruzzo EK. , et al. Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am J Hum Genet 2012; 91 (06) 1065-1072
  • 60 Zhu X, Petrovski S, Xie P. , et al. Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios. Genet Med 2015; 17 (10) 774-781
  • 61 Covone AE, Fiorillo C, Acquaviva M. , et al. WES in a family trio suggests involvement of TECPR2 in a complex form of progressive motor neuron disease. Clin Genet 2016; 90 (02) 182-185
  • 62 Stadel D, Millarte V, Tillmann KD. , et al. TECPR2 Cooperates with LC3C to Regulate COPII-Dependent ER Export. Mol Cell 2015; 60 (01) 89-104
  • 63 Nishimura T, Tamura N, Kono N. , et al. Autophagosome formation is initiated at phosphatidylinositol synthase-enriched ER subdomains. EMBO J 2017; 36 (12) 1719-1735
  • 64 Pyle A, Smertenko T, Bargiela D. , et al. Exome sequencing in undiagnosed inherited and sporadic ataxias. Brain 2015; 138 (Pt 2): 276-283
  • 65 Akizu N, Cantagrel V, Zaki MS. , et al. Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat Genet 2015; 47 (05) 528-534
  • 66 Thomas AC, Williams H, Setó-Salvia N. , et al. Mutations in SNX14 cause a distinctive autosomal-recessive cerebellar ataxia and intellectual disability syndrome. Am J Hum Genet 2014; 95 (05) 611-621
  • 67 Jazayeri R, Hu H, Fattahi Z. , et al. Exome sequencing and linkage analysis identified novel candidate genes in recessive intellectual disability associated with ataxia. Arch Iran Med 2015; 18 (10) 670-682
  • 68 Shukla A, Upadhyai P, Shah J, Neethukrishna K, Bielas S, Girisha KM. Autosomal recessive spinocerebellar ataxia 20: Report of a new patient and review of literature. Eur J Med Genet 2017; 60 (02) 118-123
  • 69 Saffari A, Kölker S, Hoffmann GF, Ebrahimi-Fakhari D. Linking mitochondrial dysfunction to neurodegeneration in lysosomal storage diseases. J Inherit Metab Dis 2017
  • 70 Yapici Z, Eraksoy M. Non-progressive congenital ataxia with cerebellar hypoplasia in three families. Acta Paediatr 2005; 94 (02) 248-253
  • 71 Kim M, Sandford E, Gatica D. , et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. eLife 2016; 5: 5
  • 72 Hara T, Nakamura K, Matsui M. , et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441 (7095): 885-889
  • 73 Lazarou M, Sliter DA, Kane LA. , et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015; 524 (7565): 309-314
  • 74 Okatsu K, Saisho K, Shimanuki M. , et al. p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 2010; 15 (08) 887-900
  • 75 Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 2010; 6 (08) 1090-1106
  • 76 Rea SL, Majcher V, Searle MS, Layfield R. SQSTM1 mutations--bridging Paget disease of bone and ALS/FTLD. Exp Cell Res 2014; 325 (01) 27-37
  • 77 Haack TB, Ignatius E, Calvo-Garrido J. , et al. Absence of the autophagy adaptor SQSTM1/p62 causes childhood-onset neurodegeneration with ataxia, dystonia, and gaze palsy. Am J Hum Genet 2016; 99 (03) 735-743