Synlett 2018; 29(06): 717-722
DOI: 10.1055/s-0037-1609339
cluster
© Georg Thieme Verlag Stuttgart · New York

Ruthenium- and Rhodium-Catalyzed Ring-Opening Coupling Reactions of Cyclopropenones with Alkenes or Alkynes

Teruyuki Kondo*
a   Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan   Email: teruyuki@scl.kyoto-u.ac.jp
,
Ryosuke Taniguchi
a   Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan   Email: teruyuki@scl.kyoto-u.ac.jp
,
Yu Kimura
b   Research and Educational Unit of Leaders for Integrated Medical Systems, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
› Author Affiliations
Further Information

Publication History

Received: 20 January 2018

Accepted after revision: 18 February 2018

Publication Date:
01 March 2018 (online)


Published as part of the Cluster C–C Activation

Abstract

Ru3(CO)12-catalyzed divergent ring-opening coupling reactions of a cyclopropenone with methyl acrylate (an electron-deficient alkene) are developed. Under an argon atmosphere, a decarbonylative linear codimer is obtained, while cyclopentenones are obtained under carbon monoxide (20 atm) without decarbonylation. While ruthenium complexes show no catalytic activity for the ring-opening cocyclization of cyclopropenones with ethylene (20 atm) or bicyclo[2.2.1]hept-2-ene (2-norbornene), rhodium complexes, especially [RhCl(η4-1,5-cod)]2, show high catalytic activity for the desired cocyclization reactions to give the corresponding cyclopentenones in high yields and selectivities. In addition, [RhCl(η4-1,5-cod)]2 realizes the catalytic ring-opening co­cyclization of cyclopropenones with internal alkynes to give the corresponding cyclopentadienones. In all these reactions, ruthena- or rhodacyclobutenones are considered to be key intermediates, generated by strain-driven oxidative addition of a cyclopropenone C–C bond to an ­active ruthenium or rhodium species.

Supporting Information

 
  • References and Notes

    • 1a C-C Bond Activation . Dong G. Springer-Verlag; Berlin: 2014
    • 1b Cleavage of Carbon-Carbon Single Bonds by Transition Metals . Murakami M. Chatani N. Wiley-VCH; Weinheim: 2016

      For reviews, see:
    • 2a Kondo T. Mitsudo T. Synlett 2001; 309
    • 2b Kondo T. Mitsudo T. Chem. Lett. 2005; 34: 1462
    • 2c Kondo T. Bull. Chem. Soc. Jpn. 2011; 84: 441
    • 2d Kondo T. Eur. J. Org. Chem. 2016; 1232
    • 3a Bishop III KC. Chem. Rev. 1976; 76: 461
    • 3b Jun C.-H. Chem. Soc. Rev. 2004; 33: 610 ; and references cited therein
    • 4a Murakami M. Amii H. Ito Y. Nature 1994; 370: 540

    • Further results have been presented elsewhere, see:
    • 4b Murakami M. Itahashi T. Amii H. Takahashi K. Ito Y. J. Am. Chem. Soc. 1998; 120: 9949
    • 4c Murakami M. Amii H. Shigeto K. Ito Y. J. Am. Chem. Soc. 1996; 118: 8285
    • 4d Matsuda T. Shigeno M. Murakami M. Chem. Lett. 2006; 35: 288
    • 5a Murakami M. Takahashi K. Amii H. Ito Y. J. Am. Chem. Soc. 1997; 119: 9307
    • 5b Murakami M. Itahashi T. Ito Y. J. Am. Chem. Soc. 2002; 124: 13976
    • 5c Matsuda T. Makino M. Murakami M. Angew. Chem. Int. Ed. 2005; 44: 4608
    • 5d Murakami M. Tsuruta T. Ito Y. Angew. Chem. Int. Ed. 2000; 39: 2484

    • An enantioselective version of the reaction has been reported, see:
    • 5e Matsuda T. Shigeno M. Murakami M. J. Am. Chem. Soc. 2007; 129: 12086
    • 5f Matsuda T. Shigeno M. Maruyama Y. Murakami M. Chem. Lett. 2007; 36: 744
    • 5g Matsuda T. Shigeno M. Murakami M. Org. Lett. 2008; 10: 5219
    • 5h Matsuda T. Makino M. Murakami M. Org. Lett. 2004; 6: 1257
    • 5i Matsuda T. Makino M. Murakami M. Bull. Chem. Soc. Jpn. 2005; 78: 1528
    • 5j Matsuda T. Shigeno M. Makino M. Murakami M. Org. Lett. 2006; 8: 3379
    • 5k Ishida N. Ikemoto W. Murakami M. Org. Lett. 2012; 14: 3230
    • 5l Ishida N. Ikemoto W. Murakami M. J. Am. Chem. Soc. 2014; 136: 5912
    • 5m Murakami M. Ashida S. Matsuda T. J. Am. Chem. Soc. 2005; 127: 6932
    • 5n Murakami M. Ashida S. Matsuda T. Tetrahedron 2006; 62: 7540
    • 5o Murakami M. Ashida S. Matsuda T. J. Am. Chem. Soc. 2006; 128: 2166
    • 5p Ashida S. Murakami M. Bull. Chem. Soc. Jpn. 2008; 81: 885
  • 6 Ko HM. Dong G. Nat. Chem. 2014; 739
    • 7a Parker E. Cramer N. Organometallics 2014; 33: 780
    • 7b Souillart L. Parker E. Cramer N. Angew. Chem. Int. Ed. 2014; 53: 3001
    • 7c Souillart L. Cramer N. Angew. Chem. Int. Ed. 2014; 53: 9640
    • 7d Souillart L. Cramer N. Chem. Eur. J. 2015; 21: 1863 For reviews, see:
    • 7e Seiser T. Saget T. Tran DN. Cramer N. Angew. Chem. Int. Ed. 2011; 50: 7740
    • 7f Souillart L. Cramer N. Chem. Rev. 2015; 115: 9410
  • 8 For the first catalytic cleavage of a C–C bond in unstrained tert-homoallylic alcohols through β-carbon elimination, see: Kondo T. Kodoi K. Nishinaga E. Okada T. Morisaki Y. Watanabe Y. Mitsudo T. J. Am. Chem. Soc. 1998; 120: 5587
    • 9a Nishimura T. Ohe K. Uemura S. J. Am. Chem. Soc. 1999; 121: 2645
    • 9b Nishimura T. Ohe K. Uemura S. J. Org. Chem. 2001; 66: 1455
    • 9c Nishimura T. Uemura S. J. Am. Chem. Soc. 1999; 121: 11010
    • 9d Nishimura T. Uemura S. Synlett 2004; 201: 201

    • Enantioselective version of these reactions have also been reported, see:
    • 9e Nishimura T. Matsumura S. Maeda Y. Uemura S. J. Am. Chem. Soc. 2003; 125: 8862
    • 9f Nishimura T. Matsumura S. Maeda Y. Uemura S. Chem. Commun. 2002; 50
    • 9g Nishimura T. Matsumura S. Maeda Y. Uemura S. Tetrahedron Lett. 2002; 43: 3037

      A series of Rh(I)-catalyzed enantioselective cleavage reactions of a C–C bond in cyclobutanols has been developed independently by Cramer and co-workers, see:
    • 10a Seiser T. Cramer N. Org. Biomol. Chem. 2009; 7: 2835
    • 10b Seiser T. Cramer N. Angew. Chem. Int. Ed. 2008; 47: 9294
    • 10c Seiser T. Cramer N. J. Am. Chem. Soc. 2010; 132: 5340
    • 10d Seiser T. Cramer N. Chem. Eur. J. 2010; 16: 3383
    • 10e Seiser T. Roth OA. Cramer N. Angew. Chem. Int. Ed. 2009; 48: 6320
    • 10f Seiser T. Cathomen G. Cramer N. Synlett 2010; 1699
    • 10g Seiser T. Cramer N. Angew. Chem. Int. Ed. 2010; 49: 10163
    • 10h Souillart L. Cramer N. Chem. Sci. 2014; 5: 837
    • 11a Kondo T. Kaneko Y. Taguchi Y. Nakamura A. Okada T. Shiotsuki M. Ura Y. Wada K. Mitsudo T. J. Am. Chem. Soc. 2002; 124: 6824
    • 11b Kondo T. Niimi M. Nomura M. Wada K. Mitsudo T. Tetrahedron Lett. 2007; 48: 2837
    • 11c Kondo T. Taguchi Y. Kaneko Y. Niimi M. Mitsudo T. Angew. Chem. Int. Ed. 2004; 43: 5369
    • 11d Kondo T. Nakamura A. Okada T. Suzuki N. Wada K. Mitsudo T. J. Am. Chem. Soc. 2000; 122: 6319
    • 11e Mitsudo T. Suzuki T. Zhang S.-W. Imai D. Fujita K. Manabe T. Shiotsuki M. Watanabe Y. Wada K. Kondo T. J. Am. Chem. Soc. 1999; 121: 1839
  • 12 Although the Ni(0)-catalyzed ring-opening dimerization of cyclopropenones to give 1,4-benzoquinones has been developed, no catalytic ring-opening coupling reactions of cyclopropenones with alkenes have been reported so far. See: Noyori R. Umeda I. Takaya H. Chem. Lett. 1972; 1189 . As for Rh(I) catalyzed ring-opening coupling reaction of cyclopropenones with alkynes, see Ref. 16
  • 13 The reactions using other cyclopropenones such as 2,3-dipropylcycloprop-2-en-1-one and bicyclo[6.1.0]non-1(8)-en-9-one competed with decarbonylation of cyclopropenones, and the corresponding alkynes were formed as the main products. Accordingly, a careful tuning of the reaction conditions for each cyclopropenone is apparently required. As shown in Scheme 1, compounds 3 and 4 were obtained in moderate yields due to the decarbonylation of 1 to give 1,2-diphenylethyne. However, no other by-products which disturb analysis and isolation of the desired compounds 3 and 4 were obtained at all.
    • 14a Wong W. Singer SJ. Pitts WD. Watkins SF. Baddley WH. J. Chem. Soc., Chem. Commun. 1972; 672
    • 14b Foerstner J. Kakoschke A. Wartchow R. Butenschön H. Oragnometallics 2000; 19: 2108
  • 15 The free energy profiles of ruthenacycles such as ruthenacyclobutenone, ruthenacyclopentene, and (maleoyl)ruthenium complexes as well as the orbital interactions in the insertion of ethylene or bicyclo[2.2.1]hept-2-ene were calculated by the BP86 density functional theory (DFT) method, see Ref. 19. The 6-31G* basis set was used for C, H, and O atoms, and Stuttgart/Dresden’s pseudopotential SDD basis set (see Ref. 20) was used for the Ru atom. See: Wang C., Wu Y.-D.; Organometallics; 2008, 27: 6152
  • 16 Wender and co-workers also reported a similar [RhCl(CO)]2-catalyzed ring-opening cocyclization of cyclopropenones with alkynes to give cyclopentadienones; however, the reaction of 1 with 11h gave 12h selectively without 12h′, see: Wender PA. Paxton TJ. Williams TJ. J. Am. Chem. Soc. 2006; 128: 14814
  • 17 Nishinaga A. Nakamura K. Matsuura T. J. Org. Chem. 1982; 47: 1431
  • 18 Ruthenium-Catalyzed Divergent Ring-Opening Coupling Reactions of 2,3-Diphenylcycloprop-2-en-1-one (1) with Methyl Acrylate (2); General ProcedureA mixture of 2,3-diphenylcycloprop-2-en-1-one (1) (1.0 mmol), methyl acrylate (2) (3.0 mL), and Ru3(CO)12 (0.066 mmol) was placed in a two-necked 20-mL Pyrex flask equipped with a magnetic stir bar and a reflux condenser under a flow of argon. The reactor was connected to a balloon (1 L) and the reaction was carried out at 100 °C for 20 hours with stirring. After the reaction mixture had been cooled, the products were analyzed by GC and GC/MS, and isolated by medium-pressure column chromatography (SiO2 60 μm, eluent: EtOAc/hexane). The reactions under carbon monoxide pressure were carried out in a 50-mL stainless steel autoclave at 160 °C for 20 hours.Rhodium-Catalyzed Ring-Opening Cocyclization of 2,3-Diphenylcycloprop-2-en-1-one (1) with Alkenes/Alkynes; General ProcedureA mixture of 2,3-diphenylcycloprop-2-en-1-one (1) (1.0–1.5 mmol), [RhCl(η4-1,5-cod)]2 (0.10 mmol), solvent (3.0 mL), and an alkene (3.0 mmol) or an alkyne (1.0 mmol) was placed in a two-necked 20-mL Pyrex flask equipped with a magnetic stir bar and a reflux condenser under a flow of argon. The reactor was connected to a balloon (1 L) and the reaction was carried out at 100 °C for 20 hours with stirring. After the reaction mixture had been cooled, the products were analyzed by GC and GC/MS, and isolated by medium-pressure column chromatography (SiO2 60 μm, eluent: EtOAc/hexane). The reactions under ethylene were carried out in a 50-mL stainless steel autoclave.The MS and NMR data of the representative new compounds, 4, 8, 12h, and 12h′ are reported below. See also the Supporting Information.Methyl 4-Oxo-2,3-diphenylcyclopent-2-ene-1-carboxylate (4)Yield: 137.2 mg (47%); pale yellow solid; 1H NMR (300 MHz, CDCl3): δ = 2.75–2.93 (dd, J = 16.0, 18.5 Hz 1 H), 2.76–2.95 (dd, J = 20.0, 18.5 Hz, 1 H), 3.50 (s, 3 H), 4.25–4.28 (dd, J = 4.2, 3.0 Hz, 1 H), 7.11–7.25 (m, 10 H); 13C NMR (75 MHz, CDCl3): δ = 39.26, 46.76, 52.42, 128.18, 128.23, 128.35, 128.45, 129.45, 129.87, 131.13, 133.99, 141.07, 164.94, 172.62, 204.60; MS (EI): m/z = 292 (M+). exo-2,3-Diphenyl-3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoinden-1-one (8)Yield: 183.0 mg (61%); orange solid; 1H NMR (300 MHz, CDCl3): δ = 0.98–1.04 (m, 1 H), 1.21–1.27 (m, 1 H), 1.38–1.44 (m, 2 H), 1.62–1.68 (m, 2 H), 2.10–2.36 (m, 1 H), 2.50 (d, J = 5.4 Hz, 1 H), 2.59–2.62 (m, 1 H), 3.20 (d, J = 5.4 Hz, 1 H), 7.17–7.33 (m, 10 H); 13C NMR (75 MHz, CDCl3): δ = 28.77, 28.91, 31.52, 38.23, 39.43, 50.65, 53.99, 127.66, 128.25, 128.31, 128.47, 129.24, 129.39, 132.11, 135.03, 142.54, 169.85, 208.50; MS (EI): m/z = 300 (M+).3-Methyl-2,4,5-triphenylcyclopenta-2,4-dien-1-one (12h)Yield: 74.1 mg (23%); dark purple solid; 1H NMR (300 MHz, CDCl3): δ = 2.07 (s, 3 H), 7.11–7.45 (m, 15 H); 13C NMR (75 MHz, CDCl3): δ = 14.52, 124.61, 125.64, 127.27, 127.30, 127.93, 128.21, 128.49, 128.59, 128.62, 129.54, 129.82, 130.68, 131.34, 133.73, 154.12, 154.46, 200.42; MS (EI): m/z = 322 (M+).4-Methylene-2,3,5-triphenylcyclopent-2-en-1-one (12h′)Yield: 64.4 mg (20%); light purple solid; 1H NMR (300 MHz, CDCl3): δ = 4.34 (s, 1 H), 5.30 (s, 1 H), 5.44 (s, 1 H), 7.20–7.41 (m, 15 H); 13C NMR (75 MHz, CDCl3): δ = 56.05, 114.81, 127.20, 127.92, 128.09, 128.50, 128.58, 128.77, 128.94, 129.77, 130.66, 133.16, 137.69, 139.68, 148.91, 164.47, 202.67; MS (EI): m/z = 322 (M+).
    • 20a Andrae D. Häußermann U. Dolg M. Stoll H. Preuß H. Theor. Chim. Acta 1990; 77: 123
    • 20b Dolg M. Wedig U. Stoll H. Preuss H. J. Chem. Phys. 1987; 86: 866