Synlett 2018; 29(10): 1340-1345
DOI: 10.1055/s-0037-1609443
letter
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Promoted Difunctionalization of Olefins Leading to α-Thiocyanato Ketones

Guangming Nan*
a   University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China   Email: nanguangming02@sohu.com
,
Huilan Yue*
b   Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai 810008, China   Email: hlyue@nwipb.cas.cn
› Author Affiliations
This work was supported by the Opening Project of Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region (No. 2017YSHXZD04).

Further Information

Publication History

Received: 07 January 2018

Accepted after revision: 08 March 2018

Publication Date:
23 April 2018 (online)


Abstract

A simple and convenient visible-light-induced difunctionalization of alkenes with ammonium thiocyanate and dioxygen has been developed at room temperature. A series of α-thiocyanato ketones could be easily and efficiently obtained in moderate to good yields through the formation of C–S and C=O bonds simply by using nontoxic and inexpensive Na2-Eosin Y as a photocatalyst.

Supporting Information

 
  • References and Notes

    • 1a Mehta RG. Liu J. Constantinou A. Thomas CF. Hawthorne M. You M. Gerhüser C. Pezzuto JM. Moon RC. Moriarty RM. Carcinogenesis 1995; 16: 399
    • 1b Yasman Y. Edrada RA. Wray V. Proksch P. J. Nat. Prod. 2003; 66: 1512
    • 1c Elhalem E. Bailey BN. Docampo R. Ujváry I. Szajnman SH. Rodriguez JB. J. Med. Chem. 2002; 45: 3984
    • 1d Kokorekin VA. Terent’ev AO. Ramenskaya GV. Grammatikova NE. Rodionova GM. Ilovaiskii AI. Pharm. Chem. J. 2013; 47: 422
    • 1e Promkatkaew M. Gleeson D. Hannongbua S. Gleeson MP. Chem. Res. Toxicol. 2014; 27: 51
    • 1f Roberts DW. Aptula AO. Chem. Res. Toxicol. 2014; 27: 240
    • 2a Still IW. J. Toste FD. J. Org. Chem. 1996; 61: 7677
    • 2b Kianmehr E. Ghanbari M. Niri MN. Faramarzi R. J. Comb. Chem. 2010; 12: 41
    • 2c Toste FD. LaRonde F. Still IW. J. Tetrahedron Lett. 1995; 17: 2949
    • 2d Erian AW. Sherif SM. Tetrahedron 1999; 55: 7957
    • 2e Demko ZP. Sharpless KB. Org. Lett. 2001; 3: 4091
    • 2f Wei ZL. Kozikowski AP. J. Org. Chem. 2003; 68: 9116
    • 2g Ke F. Qu Y.-Y. Jiang Z.-Q. Li Z.-K. Wu D. Zhou X.-G. Org. Lett. 2011; 13: 454
    • 2h Jansa P. Cechova L. Dracinsky M. Janeba Z. RSC Adv. 2013; 3: 2650
    • 3a Wood JL. Organic Reactions . Vol. 3. Adams R. Chap. 6 John Wiley & Sons; New York: 1946
    • 3b Metzer JB. Comprehensive Heterocyclic Chemistry . Vol. 6. Katritzky A. Pergamon; Oxford: 1984: 235
    • 3c Yadav LD. S. Patel R. Rai VK. Srivastava VP. Tetrahedron Lett. 2007; 48: 7793
  • 4 Kawamura S. Izumi K. Satoh J. Sanemitsu Y. Hamada T. Shibata H. Satoh R. Eur. Patent Appl. E. P. 446802, 1991
  • 5 Dittmer DC. Comprehensive Hetrocyclic Chemistry . Vol. 7. Katritzky A. Pergamon; Oxford: 1984: 178
  • 6 Prakash O. Saini N. Synth. Commun. 1993; 23: 1455
    • 7a Yadav JS. Reddy BV. S. Reddy UV. S. Krishna AD. Tetrahedron Lett. 2007; 48: 5243
    • 7b Chaskar AC. Yadav AA. Langi BP. Murugappan A. Shah C. Synth. Commun. 2010; 40: 2850
    • 7c Yadav JS. Reddy BV. S. Reddy UV. S. Chary DN. Synthesis 2008; 8: 1283
    • 7d Reddy BV. S. Reddy SM. S. Madan C. Tetrahedron Lett. 2011; 52: 1432
    • 7e Zhang G.-F. Wang Y. Ding C.-Y. Wen X. Wu J. Faming Zhuanli Shenqing 2012 CN 102320909A
    • 9a Nair V. Nair LG. George TG. Augustine A. Tetrahedron 2000; 56: 7607
    • 9b Badri R. Gorjizadeh M. Synth. Commun. 2012; 42: 2058
    • 9c Liu K. Li D.-P. Zhou S.-F. Pan X.-Q. Shoberu A. Zou J.-P. Tetrahedron 2015; 71: 4031

      Selected examples:
    • 10a Nicewicz DA. MacMillan DW. C. Science 2008; 322: 77
    • 10b Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 10c Yoon TP. Ischay MA. Du J. Nat. Chem. 2010; 2: 527
    • 10d Schultz DM. Yoon TP. Science 2014; 343: 6174
    • 10e Shi L. Xia W. Chem. Soc. Rev. 2012; 41: 7687
    • 10f Xuan J. Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 10g Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
    • 10h Skubi KL. Blum TR. Yoon TP. Chem. Rev. 2016; 116: 10035
    • 10i Romero NA. Nicewicz DA. Chem. Rev. 2016; 116: 10075

      Selected examples:
    • 11a Shi Q. Li P. Zhu X. Wang L. Green Chem. 2016; 18: 4916
    • 11b Zhang L. Yi H. Wang J. Lei A. Green Chem. 2016; 18: 5122
    • 11c Ghogare AA. Greer A. Chem. Rev. 2016; 116: 9994
    • 11d Shyam PK. Jang H.-Y. J. Org. Chem. 2017; 82: 1761
    • 11e Hu X. Zhang G. Bu F. Lei A. ACS Catal. 2017; 7: 1432
    • 11f Wei W. Cui H. Yang D. Yue H. He C. Zhang Y. Wang H. Green Chem. 2017; 19: 5608
    • 11g Li X. Fang X. Zhuang S. Liu P. Sun P. Org. Lett. 2017; 19: 3580
    • 12a Zou Y.-Q. Chen J.-R. Liu X.-P. Lu L.-Q. Davis RL. Jørgensen KA. Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 784
    • 12b Ravelli D. Fagnoni M. Albini A. Chem. Soc. Rev. 2013; 42: 97
    • 12c Keshari T. Yadav VK. Srivastava VP. Yadav LD. S. Green Chem. 2014; 16: 3986
    • 12d Shi Q. Li P. Zhu X. Wang L. Green Chem. 2016; 18: 4916
    • 12e Zhang L. Yi H. Wang J. Lei A. Green Chem. 2016; 18: 5122
    • 12f Cui H. Wei W. Yang D. Zhang Y. Zhao H. Wang L. Wang H. Green Chem. 2017; 19: 3520
    • 12g Shyam PK. Jang H.-Y. J. Org. Chem. 2017; 82: 1761
    • 13a Mitra S. Ghosh M. Mishra S. Hajra A. J. Org. Chem. 2015; 80: 8275
    • 13b Fan W. Yang Q. Xu F. Li P. J. Org. Chem. 2014; 79: 10588
    • 13c Yadav AK. Yadav LD. S. Green Chem. 2015; 17: 3515
    • 13d Hari DP. Konig B. Chem. Commun. 2014; 50: 6688
    • 13e Kundu D. Ahammed S. Ranu BC. Org. Lett. 2014; 16: 1814
    • 13f Zhang G. Zhang L. Yi H. Luo Y. Qi X. Tung C.-H. Wu L.-Z. Lei A. Chem. Commun. 2016; 52: 10407
    • 13g Hu B. Li Y. Dong W. Ren K. Xie X. Wan J. Zhang Z. Chem. Commun. 2016; 52: 3709
    • 13h Cao S. Zhong S. Xin L. Wan J.-P. Wen C. ChemCatChem 2015; 7: 1478
    • 13i Pan X.-Q. Lei M.-Y. Zou J.-P. Zhang W. Tetrahedron Lett. 2009; 50: 347
    • 14a Bu M. Lu G. Cai C. Catal. Sci. Technol. 2016; 6: 413
    • 14b Yi H. Bian C. Hu X. Niu L. Lei A. Chem. Commun. 2015; 51: 14046
    • 14c Lu Q. Zhang J. Zhao G. Qi Y. Wang H. Lei A. J. Am. Chem. Soc. 2013; 135: 11481
    • 14d Huang M.-H. Zhu Y.-L. Hao W.-J. Wang A.-F. Wang D.-C. Liu F. Wei P. Tu S.-J. Jiang B. Adv. Synth. Catal. 2017; 359: 2229
    • 15a Wei W. Ji J.-X. Angew. Chem. Int. Ed. 2011; 50: 9097
    • 15b Zhang G.-Y. Li C.-K. Li D.-P. Zeng R.-S. Shoberu A. Zou J.-P. Tetrahedron 2016; 72: 2972
    • 15c Wei W. Liu C. Yang D. Wen J. You J. Suo Y. Wang H. Chem. Commun. 2013; 49: 10239
    • 15d Wei W. Wen J. Yang D. Wu M. You J. Wang H. Org. Biomol. Chem. 2014; 12: 7678
  • 16 Preparation of 1-Phenyl-2-thiocyanatoethanone (4a) To a solution of NH4SCN (2) (30.4 mg, 0.4 mmol) and Na2-EosinY (2.8 mg, 0.004 mmol, 2 mol%) in CH3CN (5 mL) was added alkene 1a (20.8 mg, 0.2 mmol). The reaction mixture was stirred under the irradiation of 3W blue LED under an oxygen atmosphere at r.t. for 5 h. After completion of the reaction, the solution was concentrated under vacuum. The residue was purified by using a mixture of ethyl acetate and petroleum ether (1:10) as eluent to give the desired product 4a. Yield: 30 mg (79%). 1H NMR (CDCl3, 500 MHz, ppm): δ = 7.95 (d, J = 8.0 Hz, 2 H), 7.68 (t, J = 7.3 Hz, 1 H), 7.54 (t, J = 7.7 Hz, 2 H), 4.75 (s, 2 H). 13C NMR (CDCl3, 125 MHz, ppm): δ = 190.8, 134.8, 134.0, 129.2, 128.5, 111.9, 43.0. HRMS: m/z [M + Na]+ calcd for C9H7NOSNa: 200.0146; found 200.0149.