Synlett 2018; 29(13): 1745-1748
DOI: 10.1055/s-0037-1610105
letter
© Georg Thieme Verlag Stuttgart · New York

An Efficient Synthesis of New 2-Aryl-5-phenylazenyl-1,3,4-oxadiazole Derivatives from N,N'-Diarylcarbonohydrazides

Anna Kędzia
Department of Chemical Organic Technology and Petrochemistry,The Silesian University of Technology, Krzywoustego 4, 44100 Gliwice, Poland   Email: Agnieszka.Kudelko@polsl.pl
,
Karolina Jasiak
Department of Chemical Organic Technology and Petrochemistry,The Silesian University of Technology, Krzywoustego 4, 44100 Gliwice, Poland   Email: Agnieszka.Kudelko@polsl.pl
,
Agnieszka Kudelko*
Department of Chemical Organic Technology and Petrochemistry,The Silesian University of Technology, Krzywoustego 4, 44100 Gliwice, Poland   Email: Agnieszka.Kudelko@polsl.pl
› Author Affiliations
Further Information

Publication History

Received: 23 April 2018

Accepted: 16 May 2018

Publication Date:
19 June 2018 (online)


Abstract

A series of new 1,3,4-oxadiazoles conjugated to aromatic substituents by an azo linker was synthesized in a four-step reaction sequence, involving cyclodehydration of a N,N'-diacylhydrazine fragment and dehydrogenation of the neighboring hydrazine fragment of the intermediate N,N'-diarylcarbonohydrazide.

Supporting Information

 
  • References

  • 1 Shukla C. Srivastav S. JDDT 2015; 5: 8
  • 2 James ND. Growcott JW. Drugs Future 2009; 34: 624
  • 3 Adelstein GW. Yen CH. Dajani EZ. Bianchi RG. J. Med. Chem. 1976; 43: 2688
  • 4 Pal D. Tripathi R. Pandey DD. Mishra P. J. Adv. Pharm. Technol. Res. 2014; 5: 196
  • 5 O’Neal JB. Rosen H. Russell PB. Adams AC. Blumenthal A. J. Med. Chem. 1962; 5: 617
  • 6 Almasirad A. Tabatabai SA. Faizi M. Kebriaeezadeh A. Mehrabi N. Dalvandi A. Shafiee A. Bioorg. Med. Chem. Lett. 2004; 14: 6057
  • 7 Savarino A. Expert Opin. Investig. Drugs 2006; 15: 1507
  • 8 Zachariah SM. Ramkumar M. George N. Ashif MS. RJPBCS 2015; 6: 205
  • 9 Patel KD. Prajapati SM. Panchal SN. Patel HD. Synth. Commun. 2014; 41: 1859
  • 10 Zheng X. Li Z. Wang Y. Chen W. Huang Q. Liu C. Song G. J. Fluorine Chem. 2003; 123: 163
  • 11 Zou XJ. Lai LH. Zhang ZX. J. Agric. Food Chem. 2002; 50: 3757
  • 12 Schulz B. Orgzall I. Freydank A. Xii C. Adv. Colloid Interface Sci. 2005; 116: 143
  • 13 Chen ZK. Meng H. Lai YH. Huang W. Macromolecules 1999; 32: 4351
  • 14 Tamoto N. Adachi C. Nagai K. Chem. Mater. 1997; 9: 1077
  • 15 Sinigersky V. Wegner G. Schopov I. Eur. Polym. J. 1993; 29: 617
  • 16 Homocianu M. Airinei A. J. Fluoresc. 2016; 26: 1617
  • 17 Kerr NV. Ott DG. Hayes FN. J. Am. Chem. Soc. 1960; 82: 186
  • 18 Klinsberg E. J. Am. Chem. Soc. 1958; 80: 5786
  • 19 Tully WR. Cardner CR. Gillespie RJ. Westwood R. J. Med. Chem. 1991; 34: 2060
  • 20 Short FW. Long LM. J. Heterocycl. Chem. 1969; 6: 707
  • 21 Milcent R. Barbier G. J. Heterocycl. Chem. 1983; 20: 77
  • 22 Mruthyunjayaswamy BH. M. Shantaveerappa BK. Indian J. Heterocycl. Chem. 1998; 8: 31
  • 23 Werber G. Bucherri F. Noto R. Gentile M. J. Heterocycl. Chem. 1977; 14: 1385
  • 24 Rostamizadeh S. Ghasem Housaini SA. Tetrahedron Lett. 2004; 45: 8753
  • 25 Jedlovska E. Lesko J. Synth. Commun. 1994; 24: 1879
  • 26 Dabiri M. Salehi P. Baghbanzadeh M. Bahramnejad M. Tetrahedron Lett. 2006; 47: 6983
  • 27 Jasiak K. Kudelko A. Tetrahedron Lett. 2015; 56: 5878
  • 28 Dabiri M. Salehi P. Baghbanzadeh M. Zolfigol MA. Bahramnejad M. Synth. Commun. 2007; 37: 1201
  • 29 Buscemi S. Cicero MG. Vivona N. J. Heterocyclic Chem. 1988; 25: 931
  • 30 Buscemi S. Pace A. Vivona N. Caronna T. J. Heterocyclic Chem. 2001; 38: 777
  • 31 Povazanec F. Kovac J. Svoboda J. Collect Czech Chem. Commun. 1980; 45: 1299
  • 32 Wei R. Xu Z. Liu X. He Y. Wang X. J. Mater. Chem. C 2015; 3: 10925
  • 33 Węglarz-Tomczak E. Górecki Ł. CHEMIK 2012; 66: 1298
  • 34 Sandin RB. Cairns TL. Org. Synth. 1939; 29: 81
  • 35 Heo J. Lim CK. Baev A. Kuzmin AN. Park SY. Prasad PN. Kim S. Dyes Pigm. 2016; 130: 162
  • 36 Kim HS. Pham TT. Yoon KB. J. Am. Chem. Soc. 2008; 130: 2134
  • 37 Jousselme B. Blanchard P. Gallego-Planas N. Levillain E. Delaunay J. Allain M. Richomme P. Roncali J. Chem. Eur. J. 2003; 9: 5297
  • 38 Luboch E. Wagner-Wysiecka E. Poleska-Muchlado Z. Kravtsov V. Tetrahedron 2005; 61: 10738
  • 39 Zhao R. Tan C. Xie Y. Gao C. Liu H. Jiang Y. Tetrahedron Lett. 2011; 52: 3805
  • 40 Pfister R. Ihalainen J. Hamm P. Kolano C. Org. Biomol. Chem. 2008; 6: 3508
  • 41 Representative Procedures N'-[(2-Phenylhydrazinyl)carbonyl]benzohydrazide (5a) Sodium hydrogen carbonate (2.1 g, 0.03 mol) was dissolved in water (60 mL) and N-phenylcarbonohydrazide (3, 4 g, 0.02 mol) was added with vigorous stirring. Then, benzoyl chloride (4a, 2.9 ml 0.03 mol) dissolved in toluene (14 mL) was added dropwise to the resultant slurry and the precipitate was stirred at room temperature for 24 h. The viscous mass was cooled in an ice bath and filtered. The product was treated with diethyl ether, triturated, and dried. The solid was crystallized from a mixture of ethanol and acetic acid (3:1 v/v) to give pure N'-[(2-phenylhydrazinyl)carbonyl]benzohydrazide. White solid (2.97 g, 55% yield). Mp 204–206 °C. IR (ATR): ν = 3325, 3219, 3057, 2162, 1683, 1632, 1601, 1576, 1521, 1485, 1442, 1418, 1333, 1315, 1304, 1257, 1217, 1175, 1152, 1090, 1074, 1026, 974, 899, 812, 750, 687 cm–1. 1H NMR (400 MHz, DMSO): δ = 6.72 (t, J = 7.2 Hz, 1 H), 6.81 (d, J = 8.0 Hz, 2 H), 7.16 (t, J = 8.2 Hz, 2 H), 7.48 (t, J = 7.6 Hz, 2 H), 7.55 (t, J = 7.2 Hz, 1 H), 7.61 (s, 1 H), 7.90 (d, J = 6.8 Hz, 2 H), 8.36 (s, 2 H), 10.13 (s, 1 H) ppm. 13C NMR (100 MHz, DMSO): δ = 112.5, 118.6, 127.5, 128.2, 128.5, 131.5, 132.8, 149.6, 158.8, 166.1 ppm. UV-VIS: λmax (MeOH) 275.5 nm (ε·10–3 4.76 cm–1M–1), λmax (MeOH) 231.0 nm (ε·10–3 27.35 cm–1M–1), λmax (MeOH) 202.0 nm (ε·10–3 46.43 cm–1M–1). Anal. Calcd for C14H14N4O2: C, 62.21; H, 5.22; N, 20.73. Found: C, 62.22; H, 5.20; N, 20.75. HRMS calcd for (C14H14N4O2 + H+): 271.1190; found: 271.1188. 2-Phenyl-5-phenyldiazenyl-1,3,4-oxadiazole (6a) N'-[(2-Phenylhydrazinyl)carbonyl]benzohydrazide (5a, 0.01 mol) was heated with phosphorus oxychloride (19 mL) for 3 h, the course of the reaction being monitored by TLC. The resulting dark brown mixture was concentrated with a rotary evaporator. Then, distilled water (100 mL) was poured into the flask, ice cubes were added and the mixture stirred, resulting in a dark precipitate. The mixture was left over night in a refrigerator and then filtered. The resulting solid was purified by column chromatography with chloroform/ethyl acetate (5:1 v/v) as the eluent to give pure 2-phenyl-5-phenylazenyl-1,3,4-oxadiazole. Red solid (1.4 g, 56% yield). Mp 139–140 °C. IR (ATR): ν = 2921, 2161, 1968, 1694, 1603, 1585, 1540, 1509, 1478, 1461, 1449, 1422, 1330, 1318, 1307, 1245, 1220, 1203, 1151, 1096, 1071, 1017, 975, 959, 928, 773, 721, 702, 688, 679 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.54–7.64 (m, 6 H), 8.11 (dd, J 1 =7.6 Hz, J 2 = 0.8 Hz, 2 H), 8.22 (dd, J 1 =8.4 Hz, J 2 =1.6 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 123.2, 124.4, 127.6, 128.8, 129.0, 129.2, 129.6, 132.7, 134.4, 152.8, 164.5 ppm. UV-VIS: λmax (MeOH) 348.0 nm (ε·10–3 5.97 cm–1M–1), λmax (MeOH) 261.5 nm (ε·10–3 8.33 cm–1M–1), λmax (MeOH) 202.0 nm (ε·10–3 18.16 cm–1M–1). Anal. Calcd for C14H10N4O: C, 67.19; H, 4.03; N, 22.39. Found: C, 67.15; H, 4.01; N, 22.37. HRMS calcd for (C14H10N4O + H+): 250.0927; found: 250.0923.