Synlett 2019; 30(02): 185-188
DOI: 10.1055/s-0037-1610344
letter
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Stereodivergent Synthesis of Jaspine B and 4-epi-Jaspine B from Axially Chiral Allenols

Heba Alnazer
a   SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse, 31062, France   Email: ballereau@chimie.ups-tlse.fr
b   Laboratory of Applied Chemistry (LAC), Faculty of Science III, Lebanese University, P.O. Box 826, Tripoli, Lebanon
,
Tessa Castellan
a   SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse, 31062, France   Email: ballereau@chimie.ups-tlse.fr
,
Yahya Salma
b   Laboratory of Applied Chemistry (LAC), Faculty of Science III, Lebanese University, P.O. Box 826, Tripoli, Lebanon
,
Yves Génisson
a   SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse, 31062, France   Email: ballereau@chimie.ups-tlse.fr
,
a   SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse, 31062, France   Email: ballereau@chimie.ups-tlse.fr
› Author Affiliations
This work was supported by grants (AH) from research projects at the Lebanese University.
Further Information

Publication History

Received: 16 October 2018

Accepted after revision: 07 November 2018

Publication Date:
06 December 2018 (online)


Abstract

A short enantioselective synthetic route to the cytotoxic marine natural product jaspine B has been developed. A chiral non-racemic primary α-allenol, obtained from pentadecanal, gave access to an enantioenriched 2-tetradecyl-2,5-dihydrofuran as key intermediate. A stereodivergent functionalization of this dihydrofuran allowed access in a few steps to jaspine B and its 4-epimer.

Supporting Information

 
  • References and Notes

  • 1 Ledroit V, Debitus C, Lavaud C, Massiot G. Tetrahedron Lett. 2003; 44: 225
  • 2 Kuroda I, Musman M, Ohtani II, Ichiba T, Tanaka J, Gravalos DG, Higa T. J. Nat. Prod. 2002; 65: 1505
    • 3a Liu J, Du YG, Dong XM, Meng SC, Xiao JJ, Cheng LJ. Carbohydr. Res. 2006; 341: 2653
    • 3b Canals D, Mormeneo D, Fabrias G, Llebaria A, Casas J, Delgado A. Bioorg. Med. Chem. 2009; 17: 235
    • 3c Salma Y, Lafont E, Therville N, Carpentier S, Bonnafe MJ, Levade T, Génisson Y, Andrieu-Abadie N. Biochem. Pharmacol. 2009; 78: 477
    • 3d Rives A, Ladeira S, Levade T, Andrieu-Abadie N, Génisson Y. J. Org. Chem. 2010; 75: 7920
    • 3e Ghosal P, Ajay S, Meena S, Sinha S, Shaw AK. Tetrahedron: Asymmetry 2013; 24: 903
    • 3f Santos C, Fabing I, Saffon N, Ballereau S, Génisson Y. Tetrahedron 2013; 69: 7227
    • 3g Kwon Y, Song J, Bae H, Kim W.-J, Lee J.-Y, Han G.-H, Lee SK, Kim S. Mar. Drugs 2015; 13: 824
    • 3h Martinková M, Mezeiová E, Fabišíková M, Gonda J, Pilátová M, Mojžiš J. Carbohydr. Res. 2015; 402: 6
  • 4 Yoshimitsu Y, Oishi S, Miyagaki J, Inuki S, Ohno H, Fujii N. Bioorg. Med. Chem. 2011; 19: 5402
    • 5a Abraham E, Davies SG, Roberts PM, Russell AJ, Thomson JE. Tetrahedron: Asymmetry 2008; 19: 1027
    • 5b Ballereau S, Baltas M, Génisson Y. Curr. Org. Chem. 2011; 15: 953
    • 5c Martinková M, Gonda J. Carbohydr. Res. 2016; 423: 1
    • 5d Pashikanti S, Ukani R, David SA, Datta A. Synthesis 2017; 49: 2088
    • 6a Abraham E, Candela-Lena JI, Davies SG, Georgiou M, Nicholson RL, Roberts PM, Russell AJ, Sanchez-Fernandez EM, Smith AD, Thomson JE. Tetrahedron: Asymmetry 2007; 18: 2510
    • 6b Yakura T, Sato S, Yoshimoto Y. Chem. Pharm. Bull. 2007; 55: 1284
    • 6c Abraham E, Brock EA, Candela-Lena JI, Davies SG, Georgiou M, Nicholson RL, Perkins JH, Roberts PM, Russell AJ, Sanchez-Fernandez EM, Scott PM, Smith AD, Thomson JE. Org. Biomol. Chem. 2008; 6: 1665
    • 6d Enders D, Terteryan V, Palecek J. Synthesis 2008; 2278
    • 6e Venkatesan K, Srinivasan KV. Tetrahedron: Asymmetry 2008; 19: 209
    • 6f Salma Y, Ballereau S, Maaliki C, Ladeira S, Andrieu-Abadie N, Génisson Y. Org. Biomol. Chem. 2010; 8: 3227
    • 6g Urano H, Enomoto M, Kuwahara S. Biosci., Biotechnol., Biochem. 2010; 74: 152
    • 6h Llaveria J, Díaz Y, Matheu MI, Castillón S. Eur. J. Org. Chem. 2011; 1514
    • 6i Dhand V, Chang S, Britton R. J. Org. Chem. 2013; 78: 8208
    • 7a Cresswell AJ, Davies SG, Lee JA, Morris MJ, Roberts PM, Thomson JE. J. Org. Chem. 2012; 77: 7262
    • 7b Yoshimitsu Y, Miyagaki J, Oishi S, Fujii N, Ohno H. ­Tetrahedron 2013; 69: 4211
  • 8 Schmiedel VM, Stefani S, Reissig H.-U. Beilstein J. Org. Chem. 2013; 9: 2564
    • 9a Inuki S, Yoshimitsu Y, Oishi S, Fujii N, Ohno H. Org. Lett. 2009; 11: 4478
    • 9b Inuki S, Yoshimitsu Y, Oishi S, Fujii N, Ohno H. J. Org. Chem. 2010; 75: 3831
    • 11a Huang X, Cao T, Han Y, Jiang X, Lin W, Zhang J, Ma S. Chem. Commun. 2015; 6956
    • 11b Tang X, Huang X, Cao T, Han Y, Jiang X, Lin W, Tang Y, Zhang J, Yu Q, Fu C, Ma S. Org. Chem. Front. 2015; 2: 688
  • 12 (Sa )-Octadeca-2,3-dien-1-ol (4): To a flame-dried Schlenk tube with a Teflon plug were added sequentially CuBr2 (132 mg, 0.59 mmol), (R)-α,α-diphenylprolinol (750 mg, 2.96 mmol), propargylic alcohol (255 μL, 248 mg, 4.42 mmol), pentadecanal (1.0 g, 4.42 mmol) and dioxane (14 mL) under nitrogen atmosphere. The Schlenk tube was then sealed and the reaction mixture was placed in a preheated oil bath at 130 °C for 12 h. After cooling to r.t., the resulting brown mixture was diluted with ether (30 mL) and washed with an aqueous solution of hydrochloric acid (3 M, 20 mL). The organic layer was separated and the aqueous layer then extracted with ether (20 mL). The organic phases were collected, washed with saturated NaCl solution, dried over magnesium sulfate and concentrated to dryness to give a residue, which was purified by flash chromatography on silica gel (EtOAc/petroleum ether 1:8) to give the allenol 4 (530 mg, 67% yield). 1H NMR (CDCl3, 300 MHz): δ = 5.4–5.2 (m, 2 H, H2 and H4), 4.11 (dd, J = 5.4, 3.3, 2 H, H1), 2.02 (ddt, J = 9.9, 6.9, 3.6 Hz, 2 H, H5), 1.53 (br s, 1 H, OH), 1.45–1.2 (m, 24 H, H6-H17), 0.95–0.8 (m, 3 H, H18). 13C NMR (CDCl3, 75 MHz): δ = 203.1 (C3), 94.3 (C4), 91.9 (C2), 60.9 (C1), 32.0 (C5), 29.8, 29.6, 29.5, 29.3, 29.2, 28.8, 22.8 (C6–C17), 14.3 (C18). HRMS: m/z [M+H]+ calcd for C18H35O: 267.2688; found: 267.2688. [α]D 25= +44.3 (c 0.51, CHCl3). 98% ee [SFC conditions: Chiralcel IA-3 column, CO2 to CO2-MeOH 95:5, 2.0 mL/min, λ = 210 nm, tR = 6.6 (minor), 6.9 (major) min].
    • 13a Ye J, Fan W, Ma S. Chem. Eur. J. 2013; 19: 716
    • 13b Marshall JA, Wang XJ. J. Org. Chem. 1991; 56: 4913
  • 14 Harris L, Mee SP. H, Furneaux RH, Gainsford GJ, Luxenburger A. J. Org. Chem. 2011; 76: 358
  • 15 Zhao M.-L, Zhang E, Gao J, Zhang Z, Zhao Y.-T, Qu W, Liu H.-M. Carbohydr. Res. 2012; 351: 126
  • 16 Trost BM, Brown BS, McEachern EJ, Kuhn O. Chem. Eur. J. 2003; 9: 4442
  • 17 (1S,2S,5R)-2-Tetradecyl-3,6-dioxabicyclo[3.1.0]hexane (trans-6) and (1R,2S,5S)-2-tetradecyl-3,6-dioxabicyclo[3.1.0]hexane (cis-6): Trifluoroacetic acid (1.29 mL, 9 mmol) was added slowly to a solution of (S)-2-tetradecyl-2,5-dihydrofuran (400 mg, 1.50 mmol) and urea-hydrogen peroxide complex (2.8 g, 22.5 mmol) in CH2Cl2 (20 mL). After 15 min stirring at r.t., the reaction mixture was diluted with an aqueous solution of Na2SO3 (1 M, 15 mL) and extracted with CH2Cl2 (3 × 20 mL). The organic phases were collected, dried over magnesium sulfate, and concentrated to dryness to give a residue, which was purified by flash chromatography on neutral alumina (EtOAc/petroleum ether 2:98) to give the epoxide trans-6 (188 mg, 44%) and epoxide cis-6 (149 mg, 35%). trans-6: 1H NMR (CDCl3, 300 MHz): δ = 4.1–4.0 (m, 1 H, H2), 3.97 (d, J = 10.6 Hz, 1 H, H5a), 3.75 (dd, J = 3.0, 0.7 Hz, 1 H, H4), 3.70 (d, J = 10.6 Hz, 1 H, H5b), 3.58 (d, J = 3.0 Hz, 1 H, H3), 1.5–1.35 (m, 2 H, H1′), 1.35–1.2 (m, 24 H, H2′–H13′), 0.95–0.8 (m, 3 H, H14′). 13C NMR (CDCl3, 75 MHz): δ = 77.8 (C2), 66.1 (C5), 59.1 (C3), 56.0 (C4), 32.1, 31.1, 29.8, 29.7, 29.6, 29.5, 25.6, 22.8 (C1′–C13′), 14.3 (C14′). HRMS: m/z [M+H]+ calcd for C18H35O2: 283.2637; found: 283.2645. [α]D 25= –11.8 (c 1.23, CHCl3). cis-6: 1H NMR (CDCl3, 300 MHz): δ = 4.04 (d, J = 10.6 Hz, 1 H, H5a); 3.76 (t, J = 6.7 Hz, 1 H, H2), 3.72 (dd, J = 3.1, 0.5 Hz, 1 H, H4), 3.66 (dd, J = 10.6, 0.6 Hz, 1 H, H5b), 3.64 (d, J = 3.2 Hz, 1 H, H3), 1.75–1.6 (m, 2 H, H1′), 1.5–1.2 (m, 24 H, H2′–H13′), 0.95–0.8 (m, 3 H, H14′). 13C NMR (CDCl3, 75 MHz): δ = 77.8 (C2), 67.6 (C5), 57.6 (C3), 56.0 (C4), 32.1, 31.1, 30.3, 29.8, 29.7, 29.5, 26.3, 22.8 (C1′–C13′), 14.3 (C14′). HRMS: m/z [M+H]+ calcd for C18H35O2: 283.2637; found: 283.2624. [α]D 25= +17.6 (c 1.48, CHCl3).
    • 18a Lee T, Lee S, Kwak YS, Kim D, Kim S. Org. Lett. 2007; 9: 429
    • 18b Prasad KR, Chandrakumar A. J. Org. Chem. 2007; 72: 6312
    • 18c Vichare P, Chattopadhyay A. Tetrahedron: Asymmetry 2010; 21: 1983
  • 19 All analyses were in agreement with the data reported in the literature (ref. 3f). [α]D 25 = +18.1 (c 0.80, EtOH). Lit. (ref. 3f) [α]D 25 = +18.8 (c 0.85, EtOH).
  • 20 Passiniemi M, Koskinen AM. P. Org. Biomol. Chem. 2011; 9: 1774
  • 21 All analyses were in agreement with the data reported in the literature (ref. 3h). [α]D 25 = –7.1 (c 0.46, MeOH). Lit. (ref. 3h) [α]D 25= –7.3 (c 0.46, MeOH).